Skip to main content

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 6))

Abstract

Basic geometric notions describing the structure of landscapes as well as the dynamics of local search on them include basins, saddles, reachability and funnels. We focus on discrete, combinatorial landscapes and emphasize the complications arising from local degeneracies. Local search in such landscapes is well described by adaptive walks, which we use to define reachability of a target from an initial configuration. Reachability introduces a topological structure on the configuration space. Combinatorial vector fields (CVFs) provide a more powerful mathematical framework in which the subtleties of local degeneracy can be conveniently formalized. Stochastic search dynamics has a direct representation as a probability space over the set of CVFs with the given landscape as a Lyapunov function. This ensemble of CVFs is amenable to the framework of standard statistical mechanics. The implications of landscape structure on search dynamics are elucidated further by the fact that the set of all CVFs on a landscape has a product structure, factorizing over extended plateaus (so called shelves) of the landscape. Finally, we discuss the coarse graining of landscapes from two perspectives. Traditionally, a partitioning (e.g. by gradient basins) of a given landscape is used to obtain a landscape with fewer configurations called macrostates. A reverse, and less investigated, view on coarse graining considers finer landscapes, with a larger number of configurations than the original one and a non-injective mapping into the original configuration space. Such encodings of landscapes, when suitably defined, turn out advantageous for optimization by adaptive walks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binder, K., Young, A.P.: Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986)

    Article  Google Scholar 

  2. Chan, H., Dill, K.: Protein folding in the landscape perspective: Chevron plots and non-Arrhenius kinetics. Proteins: Structure, Function, and Genetics 30, 2–33 (1998)

    Article  Google Scholar 

  3. Dill, K.A., Chan, H.S.: From levinthal to pathways to funnels. Nat. Struct. Biol. 4, 10–19 (1997)

    Article  Google Scholar 

  4. Doye, J.P., Miller, M.A., Welsh, D.J.: Evolution of the potential energy surface with size for Lennard-Jones clusters. J. Chem. Phys. 111, 8417–8429 (1999)

    Article  Google Scholar 

  5. Doye, J.P.K.: Network topology of a potential energy landscape: A static scale-free network. Phys. Rev. Lett. 88, 238701 (2002)

    Article  Google Scholar 

  6. Flamm, C., Fontana, W., Hofacker, I., Schuster, P.: RNA folding kinetics at elementary step resolution. RNA 6, 325–338 (2000)

    Article  Google Scholar 

  7. Flamm, C., Hofacker, I.L.: Beyond energy minimization: Approaches to the kinetic folding of RNA. Chemical Monthly 139, 447–457 (2008)

    Article  Google Scholar 

  8. Flamm, C., Hofacker, I.L., Stadler, P.F., Wolfinger, M.T.: Barrier trees of degenerate landscapes. Z. Phys. Chem. 216, 155–173 (2002)

    Article  Google Scholar 

  9. Flamm, C., Hofacker, I.L., Stadler, B.M.R., Stadler, P.F.: Saddles and barrier in landscapes of generalized search operators. In: Stephens, C.R., Toussaint, M., Whitley, L.D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp. 194–212. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Flamm, C., Stadler, P., Maurer-Stroh, S., Zehl, M., Hofacker, I.L.: Design of multi-stable RNA molecules. RNA 7, 254–265 (2001)

    Article  Google Scholar 

  11. Forman, R.: Combinatorial vector fields and dynamical systems. Math. Z. 228, 629–681 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garey, M., Johnson, D.: Computers and Intractability. A Guide to the Theory of NP Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  13. Garstecki, P., Hoang, T.X., Cieplak, M.: Energy landscapes, supergraphs, and “folding funnels” in spin systems. Phys. Rev. E 60, 3219–3226 (1999)

    Article  Google Scholar 

  14. Hofacker, I.L.: Vienna RNA secondary structure server. Nucl. Acids Res. 31(13), 3429–3431 (2003)

    Article  Google Scholar 

  15. Kallel, L., Naudts, B., Reeves, C.R.: Properties of fitness functions and search landscapes. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing, pp. 175–206. Springer (2001)

    Google Scholar 

  16. Kawasaki, K.: Diffusion constants near the critical point for time-dependent ising models. Phys. Rev. 145, 224–230 (1966)

    Article  MathSciNet  Google Scholar 

  17. Klemm, K., Flamm, C., Stadler, P.F.: Funnels in energy landscapes. Eur. Phys. J. B 63, 387–391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klemm, K., Mehta, A., Stadler, P.F.: Landscape encodings enhance optimization. PLoS One 7, e34780 (2012)

    Google Scholar 

  19. Lorenz, R., Flamm, C., Hofacker, I.L.: 2D projections of RNA folding landscapes. In: Grosse, I., Neumann, S., Posch, S., Schreiber, F., Stadler, P.F. (eds.) GCB. LNI, vol. 157, pp. 11–20. G (2009)

    Google Scholar 

  20. Mann, M., Klemm, K.: Efficient exploration of discrete energy landscapes. Phys. Rev. E 83(1), 011113 (2011)

    Google Scholar 

  21. Mathews, D., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999)

    Article  Google Scholar 

  22. Maňuch, J., Thachuk, C., Stacho, L., Condon, A.: NP-completeness of the energy barrier problem without pseudoknots and temporary arcs. Natural Computing 10(1), 391–405 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  24. Mezey, P.G.: Potential Energy Hypersurfaces. Elsevier, Amsterdam (1987)

    Google Scholar 

  25. Morgan, S.R., Higgs, P.G.: Barrier heights between ground states in a model of RNA secondary structure. J. Phys. A: Math. Gen. 31, 3153–3170 (1998)

    Article  MATH  Google Scholar 

  26. Rammal, R., Toulouse, G., Virasoro, M.A.: Ultrametricity for physicists. Rev. Mod. Phys. 58, 765–788 (1986)

    Article  MathSciNet  Google Scholar 

  27. Reidys, C.M., Stadler, P.F.: Combinatorial landscapes. SIAM Review 44, 3–54 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ruml, W., Ngo, J., Marks, J., Shieber, S.: Easily searched encodings for number partitioning. J. Opt. Th. Appl. 89, 251–291 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L.: From sequences to shapes and back: A case study in RNA secondary structures. Proc. Roy. Soc. Lond. B 255, 279–284 (1994)

    Article  Google Scholar 

  30. Sibani, P., van der. Pas, R., Schön, J.C.: The lid method for exhaustive exploration of metastable states of complex systems. Computer Physics Communications 116, 17–27 (1999)

    Article  Google Scholar 

  31. Stadler, B.M.R., Stadler, P.F.: Combinatorial vector fields and the valley structure of fitness landscapes. J. Math. Biol. 61(6), 877–898 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stadler, B.M.R., Stadler, P.F., Shpak, M., Wagner, G.P.: Recombination spaces, metrics, and pretopologies. Z. Phys. Chem. 216, 217–234 (2002)

    Google Scholar 

  33. Stadler, P.F., Flamm, C.: Barrier trees on poset-valued landscapes. Genetic Prog. Evolv. Mach. 4, 7–20 (2003)

    Article  MATH  Google Scholar 

  34. Stadler, P.F., Stadler, B.M.R.: Genotype phenotype maps. Biological Theory 3, 268–279 (2002); Konrad Lorenz Institute Workshop on Biological Information organized by Werner Callebaut in 2002

    Google Scholar 

  35. Tomassini, M., Vérel, S., Ochoa, G.: Complex-network analysis of combinatorial spaces: The NK landscape case. Phys. Rev. E 78, 066114 (2008)

    Google Scholar 

  36. Van Nimwegen, E., Crutchfield, J.P.: Metastable evolutionary dynamics: Crossing fitness barriers or escaping via neutral paths? Bull. Math. Biol. 62, 799–848 (2000)

    Article  Google Scholar 

  37. Wales, D.J.: Decoding the energy landscape: extracting structure, dynamics and thermodynamics. Phil. Trans. R. Soc. A 370, 2877–2899 (1969)

    Article  Google Scholar 

  38. Wolfinger, M.T., Svrcek-Seiler, W.A., Flamm, C., Hofacker, I.L., Stadler, P.F.: Exact folding dynamics of RNA secondary structures. J. Phys. A: Math. Gen. 37, 4731–4741 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wright, S.: The roles of mutation, inbreeding, crossbreeeding and selection in evolution. In: Jones, D.F. (ed.) Proceedings of the Sixth International Congress on Genetics, vol. 1, vol. 1, pp. 356–366. Brooklyn Botanic Gardens, New York (1932)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Klemm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klemm, K., Qin, J., Stadler, P.F. (2014). Geometry and Coarse-Grained Representations of Landscapes. In: Richter, H., Engelbrecht, A. (eds) Recent Advances in the Theory and Application of Fitness Landscapes. Emergence, Complexity and Computation, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41888-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41888-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41887-7

  • Online ISBN: 978-3-642-41888-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics