Skip to main content

Fitness Landscapes and Problem Difficulty in Evolutionary Algorithms: From Theory to Applications

  • Chapter

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 6))

Abstract

Above many successes of evolutionary algorithms in solving computationally hard optimisations problems, a major challenge in practice remains how to select/construct the best suited algorithm when solving a problem. The well-known no free lunch theorem rules out the possibility of developing one best algorithmgenerally suitable for solving all problems. Within the realm of algorithm selection in general, the problem becomes how can we characterise problem hardness with reference to evolutionary algorithms (EAs). For the first time, this chapter rigorously derives a problem hardness measure from a theoretical difficulty measure widely used in complexity theory of EAs. Furthermore, the proposed measure is applied to construct an offline optimisation algorithm and an online optimisation algorithm. On one hand, the measure is incorporated with a machine learning algorithm for parameter tuning and achieves powerful performance. On the other hand, an adaptive algorithm framework is proposed and shows promising results. We argue that the proposed measure is general, yet powerful as an indicator of EA-hardness, and contribute to the goal of constructing better suited algorithms for solving problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adenso-Diaz, B., Laguna, M.: Fine-Tuning of Algorithms Using Fractional Experimental Design and Local Search. Operations Research 54(1), 99–114 (2006)

    Article  MATH  Google Scholar 

  2. Birattari, M., Stuzle, T., Paquete, L., Varrentrapp, K.: A Racing Algorithm for Configuring Metaheuristics. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, GECCO 2002, pp. 11–18. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  3. Borenstein, Y., Poli, R.: Information Landscapes and Problem Hardness. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO 2005, pp. 1425–1431. ACM, New York (2005)

    Chapter  Google Scholar 

  4. Cathabard, S., Lehre, P.K., Yao, X.: Non-uniform Mutation Rates for Problems with Unknown Solution Lengths. In: Beyer, H.G., Langdon, W.B. (eds.) Foundations of Genetic Algorithms (FOGA) XI, pp. 173–180. ACM, New York (2011)

    Google Scholar 

  5. Collard, P., Vérel, S., Clergue, M.: Local Search Heuristics: Fitness Cloud versus Fitness Landscape. In: Proceedings of the 16th European Conference on Artificial Intelligence, ECAI, pp. 973–974. IOS Press, Amsterdam (2004)

    Google Scholar 

  6. Corne, D.W., Oates, M.J., Kell, D.B.: On Fitness Distributions and Expected Fitness Gain of Mutation Rates in Parallel Evolutionary Algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN VII 2002. LNCS, vol. 2439, pp. 132–141. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. DaCosta, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive Operator Selection with Dynamic Multi-armed Bandits. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO 2008, pp. 913–920. ACM, New York (2008)

    Chapter  Google Scholar 

  8. Davidor, Y.: Epistasis Variance: A Viewpoint on GA-hardness. In: Rawlins, G.J.E. (ed.) Foundations of Genetic Algorithms (FOGA), pp. 23–35. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  9. Deb, K., Goldberg, D.E.: Analyzing Deception in Trap Functions. In: Whitley, L.D. (ed.) Foundations of Genetic Algorithms (FOGA) II, pp. 93–108. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  10. Derderian, K., Hierons, R.M., Harman, M., Guo, Q.: Automated Unique Input Output Sequence Generation for Conformance Testing of FSMs. The Computer Journal 49 (2006)

    Google Scholar 

  11. Guo, Q., Hierons, R.M., Harman, M., Derderian, K.: Computing Unique Input/Output Sequences Using Genetic Algorithms. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 164–177. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Guo, Q., Hierons, R., Harman, M., Derderian, K.: Constructing Multiple Unique Input/Output Sequences Using Metaheuristic Optimisation Techniques. IET Software 152(3), 127–140 (2005)

    Google Scholar 

  13. He, J., Reeves, C., Witt, C., Yao, X.: A Note on Problem Difficulty Measures in Black-box Optimization: Classification, Realizations and Predictability. Evol. Comput. 15(4), 435–443 (2007)

    Article  Google Scholar 

  14. He, J., Yao, X.: Towards an Analytic Framework for Analysing the Computation Time of Evolutionary Algorithms. Artificial Intelligence 145, 59–97 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hong, T., Wang, H., Chen, W.: Simultaneously Applying Multiple Mutation Operators in Genetic Algorithms. Journal of Heuristics 6, 439–455 (2000)

    Article  MATH  Google Scholar 

  16. Hutter, F., Hoos, H.H., Leyton-brown, K., Stuetzle, T.: ParamILS: An Automatic Algorithm Configuration Framework. Journal of Artificial Intelligence Research 36, 267–306 (2009)

    MATH  Google Scholar 

  17. Jones, T., Forrest, S.: Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann, San Francisco (1995), http://portal.acm.org/citation.cfm?id=645514.657929

    Google Scholar 

  18. Jong, K.D.: Parameter Setting in EAs: a 30 Year Perspective, pp. 1–18. Springer (2007)

    Google Scholar 

  19. Lee, D., Yannakakis, M.: Testing Finite-State Machines: State Identification and Verification. IEEE Transactions on Computers 43(3), 30–320 (1994)

    Article  MathSciNet  Google Scholar 

  20. Lehre, P.K., Yao, X.: Runtime Analysis of (1+1) EA on Computing Unique Input Output Sequences. In: IEEE Congress on Evolutionary Computation, 2007, pp. 1882–1889 (2007)

    Google Scholar 

  21. Lehre, P.K., Yao, X.: Crossover Can Be Constructive When Computing Unique Input Output Sequences. In: Li, X., et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 595–604. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Li, J., Lu, G., Yao, X.: Fitness Landscape-based Parameter Tuning Method for Evolutionary Algorithms for Computing Unique Input Output Sequences. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011, Part II. LNCS, vol. 7063, pp. 453–460. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Lindawati, Lau, H.C., Lo, D.: Instance-Based Parameter Tuning via Search Trajectory Similarity Clustering. In: Coello, C.A.C. (ed.) LION 5 2011. LNCS, vol. 6683, pp. 131–145. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  24. Lu, G., Li, J., Yao, X.: Fitness-probability Cloud and a Measure of Problem Hardness for Evolutionary Algorithms. In: Hao, J.-K. (ed.) EvoCOP 2011. LNCS, vol. 6622, pp. 108–117. Springer, Heidelberg (2011)

    Google Scholar 

  25. Lu, G., Li, J., Yao, X.: Embrace the New Trend in SBSE with Fitness-Landscape Based Adaptive Evolutionary Algorithm. In: Fast Abstracts of the 4th Symposium on Search Based Software Engineering (2012)

    Google Scholar 

  26. Madras, N.: Lectures on Monte Carlo Methods. American Mathematical Society, Rhode Island (2002)

    MATH  Google Scholar 

  27. Manderick, B., Weger, M.K., Spiessens, P.: The Genetic Algorithm and the Structure of the Fitness Landscape. In: ICGA 1991, pp. 143–150 (1991)

    Google Scholar 

  28. Maturana, J., Lardeux, F., Saubion, F.: Autonomous Operator Management for Evolutionary Algorithms. Journal of Heuristics 16, 881–909 (2010)

    Article  MATH  Google Scholar 

  29. Mengshoel, O.J., Goldberg, D.E., Wilkins, D.C.: Deceptive and Other Functions of Unitation as Bayesian Networks. In: Symposium on Genetic Algorithms, SGA (1998)

    Google Scholar 

  30. Merz, P.: Advanced Fitness Landscape Analysis and the Performance of Memetic Algorithms. Evol. Comput. 12, 303–325 (2004)

    Article  Google Scholar 

  31. Naudts, B., Kallel, L.: A Comparison of Predictive Measures of Problem Difficulty in Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 4(1), 1–15 (2000)

    Article  Google Scholar 

  32. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover, Mineola (1998)

    MATH  Google Scholar 

  33. Radcliffe, N.J., Surry, P.D.: Fitness Variance of Formae and Performance Prediction. In: Whitley, L.D., Vose, M.D. (eds.) Foundations of Genetic Algorithms (FOGA) 3, pp. 51–72 (1995)

    Google Scholar 

  34. Thierens, D.: Adaptive Strategies for Operator Allocation. In: Lobo, F., Lima, C., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms, vol. 54, pp. 77–90. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  35. Tuson, A., Ross, P.: Adapting Operator Settings in Genetic Algorithms. Evol. Comput. 6(2), 161–184 (1998)

    Article  Google Scholar 

  36. Vanneschi, L., Clergue, M., Collard, P., Tomassini, M., Vérel, S.: Fitness Clouds and Problem Hardness in Genetic Programming. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 690–701. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  37. Vanneschi, L., Tomassini, M., Collard, P., Vérel, S.: Negative Slope Coefficient: A Measure to Characterize Genetic Programming Fitness Landscapes. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 178–189. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  38. Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Smoothness, Ruggedness and Neutrality of Fitness Landscapes: from Theory to Application, pp. 3–44. Springer, New York (2003)

    Google Scholar 

  39. Whitacre, J., Pham, T., Sarker, R.: Credit Assignment in Adaptive Evolutionary Algorithms. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO 2006, pp. 1353–1360. ACM, New York (2006)

    Google Scholar 

  40. Wright, S.: The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in Evolution. In: Proc. 6th Congr. Genetics, vol. 1, p. 365 (1932)

    Google Scholar 

  41. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based Algorithm Selection for SAT. Journal of Artificial Intelligence Research 32, 565–606 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanzhou Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lu, G., Li, J., Yao, X. (2014). Fitness Landscapes and Problem Difficulty in Evolutionary Algorithms: From Theory to Applications. In: Richter, H., Engelbrecht, A. (eds) Recent Advances in the Theory and Application of Fitness Landscapes. Emergence, Complexity and Computation, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41888-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41888-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41887-7

  • Online ISBN: 978-3-642-41888-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics