Skip to main content

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 6))

Abstract

Complex optimization problems may have fitness landscapes with fractal characteristics. This chapter reviews landscapes obtained from basic artificial test functions as well as cost functions of real application problems which have the property to be fractal. We will discuss the description, structure and complexity of these fractal fitness landscapes. A major topic of this chapter is to use elements from fractal geometry to measure attributes of fractal landscapes. Also, structural as well as functional properties of the landscape are discussed. The examples used in this chapter are two-dimensional, however it is possible to extend the proposed analysis to n dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnsley, M.F.: Fractals Everywhere. Academic Press Professional, San Diego (1993)

    MATH  Google Scholar 

  2. Berry, M.V., Lewis, Z.V.: On the Weierstrass - Mandelbrot fractal function. Proceedings Royal Society of London A370, 459–484 (1980)

    Google Scholar 

  3. Brown, R., Rulkov, N.F., Tracy, E.R.: Modeling and synchronization chaotic system from time-series data. Phys. Rev. E49, 3784–3800 (1994)

    Google Scholar 

  4. Chen, G.: Controlling Chaos and Bifurcations in Engineering Systems. CRC Press, Boca Raton (2000)

    MATH  Google Scholar 

  5. Crona, K., Greene, D., Barlow, M.: The peaks and geometry of fitness landscapes. J. Theor. Biol. 317, 1–10 (2013)

    Article  MathSciNet  Google Scholar 

  6. Garrido, A.: Classifying entropy measures. Symmetry 3, 487–502 (2011)

    Article  MathSciNet  Google Scholar 

  7. Gonzalez-Miranda, J.M.: Synchronization and Control of Chaos. An introduction for scientists and engineers. Imperial College Press, London (2004)

    Book  Google Scholar 

  8. Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983)

    Article  MathSciNet  Google Scholar 

  9. Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28, 2591–2593 (1983)

    Article  Google Scholar 

  10. Han, T.S., Kobayashi, K.: Mathematics of Information and Coding. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  11. Hilborn, R.C.: Chaos and Nonlinear Dynamics. Oxford University Press, Oxford (1994)

    MATH  Google Scholar 

  12. Jerabkova, P., Zmeskal, O., Haderka, J.: Fractal analysis of the images using wavelet transformation. In: Complexus Mundi-Emergent Patterns in Nature, pp. 300–312. World Scientific, Singapore (2006)

    Google Scholar 

  13. Higashi, M., Klir, G.J.: Measures of uncertainty and information based on possibility distributions. Int. J. General Syst. 9, 43–58 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoshino, T., Mitsumoto, D., Nagano, T.: Fractal fitness landscape and loss of robustness in evolutionary robot navigation. Autonomous Robots 5, 199–213 (1998)

    Article  Google Scholar 

  15. Mandelbrot, B.B.: How long is the coast of britain? Statistical self-similarity and fractional dimension. Science 156, 636–638 (1967), doi:10.1126/science.156.3775.636

    Article  Google Scholar 

  16. Mandelbrot, B.B.: Fractal Geometry of Nature. W. H. Freeman and Co., New York (1983)

    Google Scholar 

  17. Mandelbrot, B.B.: A fractal set is one for which the fractal (Hausdorff-Besicovitch) dimension strictly exceeds the topological dimension. In: Fractals and Chaos. Springer, Berlin (2004)

    Google Scholar 

  18. Martin, C.H., Wainwright, P.C.: Multiple fitness peaks on the adaptive landscape drive adaptive radiation in the wild. Science 339, 208–211 (2013)

    Article  Google Scholar 

  19. May, R.: Simple mathematical model with very complicated dynamics. Nature 261, 45–67 (1976)

    Article  Google Scholar 

  20. Peitgen, H.O., Jürgens, H., Saupe, D.: Chaos and Fractals, New Frontiers of Science. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  21. Pikovsky, A., Rosemblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  22. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–427 (1992)

    Article  Google Scholar 

  23. Pyragas, K.: Control of Chaos via Extended Delay Feedback. Phys. Lett. A 206, 323–330 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Renyi, A.: Probability theory. Elsevier, Amsterdam (1970)

    Google Scholar 

  25. Ribeiro, H.V., Zunino, L., Lenzi, E.K., Santoro, P.A., Mendes, R.S.: Complexity-entropy causality plane as a complexity measure for two-dimensional patterns. Plos One 7(8) (2012), doi:10.1371/journal.pone.0040689

    Google Scholar 

  26. Richardson, L.F., Ashford, O.M., Charnock, H., Drazin, P.G., Hunt, J.C.R., Smoker, P., Sutherland, I.: The Collected Papers of Lewis Fry Richardson, Cambridge (1993)

    Google Scholar 

  27. Richter, H.: Analyzing dynamic fitness landscapes of the targeting problem of chaotic systems. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 83–92. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  28. Rulkov, N.F., Sushchik, M.M.: Robustness of synchronized chaotic oscillations. Int. J. Bifurc. Chaos 7, 625–643 (1997)

    Article  MATH  Google Scholar 

  29. Schuster, H.G.: Handbook of Chaos Control. Wiley-VCH, New York (1999)

    Book  MATH  Google Scholar 

  30. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    Google Scholar 

  31. Senkerik, R., Zelinka, I., Navratil, E.: Optimization of feedback control of chaos by evolutionary algorithms. In: First IFAC Conference on Analysis and Control of Chaotic Systems, Reims, France, June 28-30 (2006)

    Google Scholar 

  32. Senkerik, R., Zelinka, I.: E Navratil, Investigation on evolutionary EDTAS chaos control. In: Proc. 20th European Simulation Multiconference (ESM 2006), Germany, Bonn, May 28-31 (2006)

    Google Scholar 

  33. Senkerik, R., Davendra, D., Zelinka, I., Oplatková, Z., Jasek, R.: Performance comparison of differential evolution and SOMA on chaos control optimization problems. Int. J. Bifurc. Chaos 22, 1230025–1–16 (2012)

    Google Scholar 

  34. Stein, D.L., Newman, C.M.: Rugged landscapes and timescale distributions in complex systems. In: Simos, T.E., Psihoyios, G., Tsitouras, C. (eds.) Proc. International Conference of Numerical Analysis and Applied Mathematics, ICNAAM (2012)

    Google Scholar 

  35. Sushchik, M.M., Rulkov, N.F., Tsimring, L.S., Abarbanel, H.D.I.: Generalized synchronization of chaos in directionally coupled chaotic systems. In: Proceedings of 1995 Intl. Symp. on Nonlinear Theory and Appl., pp. 949–952. IEEE-Press, Piscataway (1995)

    Google Scholar 

  36. Tomankova, K., Jerabkova, P., Zmeskal, O., Vesela, M., Haderka, J.: Use of the image analysis to study growth and division of yeast cells. J. Imaging Sci. Technol. 50, 583–589 (2006)

    Article  Google Scholar 

  37. Trochet, H.: A History of Fractal Geometry. MacTutor History of Mathematics (2009)

    Google Scholar 

  38. Weinberger, E.D., Stadler, P.F.: Why some fitness landscapes are fractal. J. Theor. Biol. 163, 255–275 (1993)

    Article  Google Scholar 

  39. Zelinka, I., Celikovsky, S., Richter, H., Chen, G.: Evolutionary Algorithms and Chaotic Systems. Springer, Germany (2010)

    Book  MATH  Google Scholar 

  40. Zelinka, I., Senkerik, R., Navratil, E.: Investigation on evolutionary optimization of chaos control. Chaos, Solitons and Fractals 40, 111–129 (2009)

    Article  MATH  Google Scholar 

  41. Zmeskal, O., Nezadal, M., Buchnicek, M.: Fractal-Cantorian geometry, Hausdorff dimension and the fundamental laws of physics. Chaos, Solitons and Fractals 17, 113–119 (2003)

    Article  MATH  Google Scholar 

  42. Zmeskal, O., Nezadal, M., Buchnicek, M.: Fractal analysis of printed structures. J. Imaging Sci. Technol. 46, 453–456 (2002)

    Google Scholar 

  43. Zmeskal, O., Bzatek, T., Nezadal, M.: HarFA - Harmonic and Fractal image Analyser (1997, 2012), http://www.fch.vutbr.cz/lectures/imagesci/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Zelinka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zelinka, I., Zmeskal, O., Saloun, P. (2014). Fractal Analysis of Fitness Landscapes. In: Richter, H., Engelbrecht, A. (eds) Recent Advances in the Theory and Application of Fitness Landscapes. Emergence, Complexity and Computation, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41888-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41888-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41887-7

  • Online ISBN: 978-3-642-41888-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics