Skip to main content

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 6))

  • 1751 Accesses

Abstract

A large number of heuristic optimization algorithms for dynamic optimization has already been proposed. The aim of this chapter is to discuss methods of evaluating their efficiency. Thus, the following issues have to be considered: (i) measures for performance and associated measurement methods, (ii) dynamic benchmarks and different types for implementing changes, and (iii) the role of time and uncertainty originating from the measurement method. In this chapter the issues are discussed for the case of single-objective optimization in dynamic multimodal fitness landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alba, E., Sarasola, B.: Measuring fitness degradation in dynamic optimization problems. In: Di Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 572–581. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Ayvaz, D., Topcuoglu, H.R., Gürgen, F.S.: Performance evaluation of evolutionary heuristics in dynamic environments. Appl. Intell. 37(1), 130–144 (2012)

    Article  Google Scholar 

  3. Bäck, T.: On the behaviour of evolutionary algorithms in dynamic environments. In: Proc. of the Fifth IEEE Conf. on Evolutionary Computation, pp. 446–451. IEEE Press (1998)

    Google Scholar 

  4. Bäck, T., Schütz, M.: Intelligent mutation rate control in canonical genetic algorithm. In: Michalewicz, M., Raś, Z.W. (eds.) ISMIS 1996. LNCS, vol. 1079, pp. 158–167. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  5. Branke, J.: Memory enhanced evolutionary algorithm for changing optimization problems. In: Proc. of the Congr. on Evolutionary Computation, vol. 3, pp. 1875–1882. IEEE Press (1999)

    Google Scholar 

  6. Cedeño, W., Vemuri, V.R.: On the use of niching for dynamic landscapes. In: Proc. of the 1997 IEEE Int. Conf. on Evolutionary Computation, pp. 361–366. IEEE Press (1997)

    Google Scholar 

  7. Cobb, H.G., Grefenstette, J.F.: Genetic algorithms for tracking changing environments. In: Proc. of the Fifth Int. Conf. on Genetic Algorithms (ICGA 1993), pp. 523–530. Morgan Kaufmann Publishers (1993)

    Google Scholar 

  8. Dasgupta, D., McGregor, D.R.: Nonstationary function optimization using the structured genetic algorithm. In: Parallel Problem Solving from Nature 2, PPSN-II, pp. 147–156. Elsevier (1992)

    Google Scholar 

  9. Gallagher, M., Yuan, B.: A general-purpose tunable landscape generator. IEEE Trans. Evol. Comput. 10(5), 590–603 (2006)

    Article  Google Scholar 

  10. Goldberg, D.E., Smith, R.E.: Non-stationary function optimisation using genetic algorithms with dominance and diploidy. In: Proc of the 2nd Int. Conf. on Genetic Algorithms and Their Applications, pp. 59–68. Lawrence Erlbaum Associates (1987)

    Google Scholar 

  11. Grefenstette, J.J.: Genetic algorithms for changing environments. In: Parallel Problem Solving from Nature 2, PPSN-II, pp. 139–146. Elsevier (1992)

    Google Scholar 

  12. Jin, Y., Branke, J.: Evolutionary algorithms in uncertain environments – a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)

    Article  Google Scholar 

  13. Jin, Y., Sendhoff, B.: Constructing dynamic optimization test problems using the multi-objective optimization concept. In: Raidl, G.R., et al. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 525–536. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Jones, T.: Evolutionary algorithms, fitness landscapes and search. Ph.D. thesis, University of New Mexico (1995)

    Google Scholar 

  15. Li, C., Yang, S.: A generalized approach to construct benchmark problems for dynamic optimization. In: Li, X., et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 391–400. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Mori, N., Kita, H., Nishikawa, Y.: Adaptation to a changing environment by means of the thermodynamical genetic algorithm. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 513–522. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  17. Mori, N., Kita, H., Nishikawa, Y.: Adaptation to a changing environment by means of the feedback thermodynamical genetic algorithm. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 149–158. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  18. Morrison, R.W.: Performance measurement in dynamic environments. In: GECCO 2003: Proc. of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conf., pp. 99–102. AAAI (2003)

    Google Scholar 

  19. Morrison, R.W., De Jong, K.A.: A test problem generator for non-stationary environments. In: Proc. Congress on Evolutionary Computation, pp. 1859–1866. IEEE Press (1999)

    Google Scholar 

  20. Ng, K.P., Wong, K.C.: A new diploid scheme and dominance change mechanism for non-stationary function optimization. In: Proc. of the Sixth Int. Conf. on Genetic Algorithms, pp. 159–166. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  21. Richter, H.: Change detection in dynamic fitness landscapes: An immunological approach. In: World Congress on Nature and Biologically Inspired Computing, pp. 719–724. IEEE (2009)

    Google Scholar 

  22. Richter, H.: Detecting change in dynamic fitness landscapes. In: IEEE Congress on Evolutionary Computation, pp. 1613–1620. IEEE (2009)

    Google Scholar 

  23. Richter, H.: Evolutionary optimization and dynamic fitness landscapes; from reaction–diffusion systems to chaotic CML. In: Zelinka, I., Celikovsky, S., Richter, H., Chen, G. (eds.) Evolutionary Algorithms and Chaotic Systems. SCI, vol. 267, pp. 409–446. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Richter, H., Dietel, F.: Change detection in dynamic fitness landscapes with time-dependent constraints. In: World Congress on Nature and Biologically Inspired Computing, pp. 580–585. IEEE (2010)

    Google Scholar 

  25. Salomon, R.: Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. BioSystems 39(3), 263–278 (1996)

    Article  Google Scholar 

  26. Salomon, R., Eggenberger, P.: Adaptation on the evolutionary time scale: A working hypothesis and basic experiments. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 251–262. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  27. Tinós, R., Yang, S.: Continuous dynamic problem generators for evolutionary algorithms. In: The Congress on Evolutionary Computation, pp. 236–243. IEEE (2007)

    Google Scholar 

  28. Trojanowski, K., Michalewicz, Z.: Evolutionary approach to non-stationary optimisation tasks. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1999. LNCS, vol. 1609, Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  29. Trojanowski, K., Michalewicz, Z.: Searching for optima in non-stationary environments. In: Proc. of the Congress on Evolutionary Computation, vol. 3, pp. 1843–1850. IEEE Press (1999)

    Google Scholar 

  30. Trojanowski, K., Obuchowicz, A.: Measures for non-stationary optimization tasks. In: 5th ICANNGA: Artificial Neural Nets and Genetic Algorithms, pp. 244–247. Springer (2001)

    Google Scholar 

  31. Trojanowski, K., Raciborski, M., Kaczyński, P.: Self-adaptive differential evolution with hybrid rules of perturbation for dynamic optimization. Journal of Telecommunications and Information Technology 4, 18–28 (2011)

    Google Scholar 

  32. Vavak, F., Fogarty, T.C.: A comparative study of steady state and generational genetic algorithms for use in nonstationary environments. In: Fogarty, T.C. (ed.) AISB-WS 1996. LNCS, vol. 1143, pp. 297–304. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  33. Vavak, F., Fogarty, T.C.: Comparison of steady state and generational genetic algorithms for use in nonstationary environments. In: Int. Conf. on Evolutionary Computation, pp. 192–195. IEEE Press (1996)

    Google Scholar 

  34. Weicker, K.: Performance measures for dynamic environments. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 64–76. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  35. Weicker, K., Weicker, N.: On evolution strategy optimization in dynamic environments. In: Proc. of the Congress on Evolutionary Computation, vol. 3, pp. 2039–2046. IEEE Press (1999)

    Google Scholar 

  36. Yang, S.: Non-stationary problem optimization using the primal-dual genetic algorithm. In: The Congress on Evolutionary Computation, vol. 3, pp. 2246–2253. IEEE (2003)

    Google Scholar 

  37. Yang, S., Yao, X.: Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput. 9(11), 815–834 (2005)

    Article  MATH  Google Scholar 

  38. Yuan, B., Gallagher, M.: On building a principled framework for evaluating and testing evolutionary algorithms: a continuous landscape generator. In: IEEE Congress on Evolutionary Computation, pp. 451–458. IEEE (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trojanowski, K. (2014). Dynamic Real-Valued Landscapes and the Optimization Performance. In: Richter, H., Engelbrecht, A. (eds) Recent Advances in the Theory and Application of Fitness Landscapes. Emergence, Complexity and Computation, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41888-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41888-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41887-7

  • Online ISBN: 978-3-642-41888-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics