Skip to main content

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 6))

Abstract

In this chapter we present an overview of a statistical analysis to measure and express the correlation structure of fitness landscapes. This correlation analysis is then applied to both static and coupled fitness landscapes as generated by the NK-model and the NKC-model, respectively. An overview of the main results is provided, which shows that this correlation analysis can indeed be applied in a meaningful way to coupled fitness landscapes. This can provide a direct and useful link to the actual search performance of evolutionary algorithms that use a coevolutionary approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press (1996)

    Google Scholar 

  2. Box, G.E.P., Jenkins, G.M.: Time Series Analysis, Forecasting and Control. Holden Day (1970)

    Google Scholar 

  3. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)

    Google Scholar 

  4. Forrest, S., Mitchell, M.: Relative building-block fitness and the building-block hypothesis. In: Whitley, D. (ed.) Foundations of Genetic Algorithms 2, pp. 109–126. Morgan Kaufmann (1993)

    Google Scholar 

  5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley (1989)

    Google Scholar 

  6. Granger, C.W.J., Newbold, P.: Forecasting Economic Time Series, 2nd edn. Academic Press (1986)

    Google Scholar 

  7. Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D 42, 228–234 (1990)

    Article  Google Scholar 

  8. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press (1992)

    Google Scholar 

  9. Hordijk, W.: A measure of landscapes. Evolutionary Computation 4, 335–360 (1996)

    Article  Google Scholar 

  10. Hordijk, W.: Correlation analysis of the synchronizing-CA landscape. Physica D 107, 255–264 (1997)

    Article  Google Scholar 

  11. Hordijk, W., Kauffman, S.A.: Correlation analysis of coupled fitness landscapes. Complexity 10(6), 41–49 (2005)

    Article  MathSciNet  Google Scholar 

  12. Hordijk, W., Stadler, P.F.: Amplitute spectra of fitness landscapes. Advances in Complex Systems 1(1), 39–66 (1998)

    Article  MATH  Google Scholar 

  13. Jones, T.: Evolutionary Algorithms, Fitness Landscapes, and Search. PhD thesis, University of New Mexico, Albuquerque, NM, USA (1995)

    Google Scholar 

  14. Jones, T.: One operator, one landscape. SFI working paper 95-02-025 (1995)

    Google Scholar 

  15. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Eshelman, L.J. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann (1995)

    Google Scholar 

  16. Judge, G.G., Hill, R.C., Griffiths, W.E., Lutkepohl, H., Lee, T.C.: Introduction to the Theory and Practice of Econometrics, 2nd edn. John Wiley & Sons (1988)

    Google Scholar 

  17. Juillé, H., Pollack, J.B.: Coevolutionary learning and the design of complex systems. Advances in Complex Systems 2(4), 371–394 (2000)

    Article  Google Scholar 

  18. Kauffman, S.A.: Adaptation on rugged fitness landscapes. In: Stein, D. (ed.) Lectures in the Sciences of Complexity, pp. 527–618. Addison-Wesley (1989)

    Google Scholar 

  19. Kauffman, S.A.: The Origins of Order. Oxford University Press (1993)

    Google Scholar 

  20. Kauffman, S.A., Johnson, S.: Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches. Journal of Theoretical Biology 149, 467–505 (1991)

    Article  Google Scholar 

  21. Kauffman, S.A., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. Journal of Theoretical Biology 128, 11–45 (1987)

    Article  MathSciNet  Google Scholar 

  22. Lipsitch, M.: Adaptation on rugged landscapes generated by iterated local interactions of neighboring genes. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 128–135. Morgan Kaufmann (1991)

    Google Scholar 

  23. Manderick, B., de Weger, M., Spiessens, P.: The genetic algorithm and the structure of the fitness landscape. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 143–150. Morgan Kaufmann (1991)

    Google Scholar 

  24. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press (1996)

    Google Scholar 

  25. Mitchell, M., Forrest, S., Holland, J.H.: The royal road for genetic algorithms: Fitness landscapes and GA performance. In: Varela, F.J., Bourgine, P. (eds.) Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, pp. 245–254. MIT Press (1992)

    Google Scholar 

  26. Stadler, P.F.: Towards a theory of landscapes. In: Lopéz-Peña, R., Capovilla, R., García-Pelayo, R., Waelbroeck, H., Zertuche, F. (eds.) Complex Systems and Binary Networks, pp. 77–163. Springer (1995)

    Google Scholar 

  27. Stadler, P.F.: Fitness landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological Evolution and Statistical Physics. Lecture Notes in Physics, pp. 183–204. Springer (2002)

    Google Scholar 

  28. Weinberger, E.D.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biological Cybernetics 63, 325–336 (1990)

    Article  MATH  Google Scholar 

  29. Werfel, J., Mitchell, M., Crutchfield, J.P.: Resource sharing and coevolution in evolving cellular automata. IEEE Transactions on Evolutionary Computation 4(4), 388–393 (2000)

    Article  Google Scholar 

  30. Wilson, S.W.: GA-easy does not imply steepest-ascent optimizable. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 85–89. Morgan Kaufmann (1991)

    Google Scholar 

  31. Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Jones, D.F. (ed.) Proceedings of the Sixth International Congress on Genetics, vol. 1, pp. 356–366 (1932)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Hordijk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hordijk, W. (2014). Correlation Analysis of Coupled Fitness Landscapes. In: Richter, H., Engelbrecht, A. (eds) Recent Advances in the Theory and Application of Fitness Landscapes. Emergence, Complexity and Computation, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41888-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41888-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41887-7

  • Online ISBN: 978-3-642-41888-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics