Skip to main content

Ursachen der Lese-Rechtschreibstörung

  • Chapter
  • First Online:
Lese-Rechtschreibstörung

Zusammenfassung

In diesem Kapitel werden zunächst die genetischen und neurobiologischen Grundlagen der Lese-Rechtschreibstörung vermittelt (▶ Abschn. 4.1 und ▶ Abschn. 4.2). Im Hauptteil des Kapitels werden dann in ▶ Abschn. 4.3 einige etablierte Theorien zu kognitiven Ursachen der Lese-Rechtschreibstörung genauer besprochen, die sich darin unterscheiden, welche Informationsverarbeitungsdefizite konkret für die gravierenden und überdauernden Schwierigkeiten im Lesen und Schreiben verantwortlich gemacht werden, und wie die Verursachung dieser Defizite auf biologischer Ebene erklärt wird. Folgende Theorien zur kognitiven Ursache der Lese-Rechtschreibstörung werden dargestellt: die phonologische Theorie der Lese-Rechtschreibstörung, drei Theorien zur Störung der zeitlichen auditiven Informationsverarbeitung bei Lese-Rechtschreibstörung, die Cerebellum-Theorie der Lese-Rechtschreibstörung, die magnozelluläre Theorie der Lese-Rechtschreibstörung sowie die Theorie des funktionalen Koordinationsdefizits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Achim, A., & Corballis, M. C. (1977). Mirror image equivalence and the anterior commissure. Neuropsychologia, 15, 475–478.

    PubMed  Google Scholar 

  • Ackermann, H., & Hertrich, I. (2000). The contribution of the cerebellum to speech processing. Journal of Neurolinguistics, 13, 95–116.

    Google Scholar 

  • Ackermann, H., Wildgruber, D., Daum, I., & Grodd, W. (1998). Does the cerebellum contribute to cognitive aspects of speech production. A functional magnetic resonance imaging (fMRI) study in humans. Neuroscience Letters, 247, 187–190.

    PubMed  Google Scholar 

  • Ackermann, H., Mathiak, K., & Riecker, A. (2007). The contribution of the cerebellum to speech production and speech perception: Clinical and functional imaging data. Cerebellum, 6, 202–213.

    PubMed  Google Scholar 

  • Adlard A. & Hazan, V. (1998). Speech perception in children with specific reading difficulties (dyslexia). The Quarterly Journal of Experimental Psychology, 51A, 153–177.

    Google Scholar 

  • Alexander, A. W., & Slinger-Constant, A. M. (2004). Current status of treatments for dyslexia: Critical review. Journal of Child Neurology, 19(10), 744–758.

    PubMed  Google Scholar 

  • Amitay, S., Ahissar, M., & Nelken, I. (2002). Auditory processing deficits in reading disabled adults. Journal of the Association for Research in Otolaryngology, 3, 302–320.

    PubMed Central  PubMed  Google Scholar 

  • Anderson, J. R. (1996). ACT: A Simple Theory of Complex Cognition. American Psychologist, 51, 355–365.

    Google Scholar 

  • Becker, C., Elliott, M., & Lachmann, T. (2005). Evidence for impaired visuoperceptual organization in developmental dyslexics and its relation to temporal processes. Cognitive Neuropsychology, 22, 499–522.

    PubMed  Google Scholar 

  • Becker, C., Lachmann, T., & Elliott, M. (2001). Evidence for impaired integration-segmentation processes and effects of oscillatory synchrony on stimulus coding in developmental dyslexics. In E. Sommerfeld, R. Kompass, & T. Lachmann (Hrsg.), Proceedings of the International Society for Psychophysics (S. 273–278). Lengerich: Pabst.

    Google Scholar 

  • Bedwell, J. S., Brown, J. M., & Miller L. S. (2003). The magnocellular visual system and schizophrenia: what can the color red tell us? Schizophrenia Research, 63, 273–284.

    PubMed  Google Scholar 

  • Berti, S. (2011). The attentional blink demonstrates automatic deviance processing in vision. NeuroReport, 22(13), 664–667.

    PubMed  Google Scholar 

  • Biscaldi, M., Gezeck, S., & Stuhr, V. (1998). Poor saccadic control correlates with dyslexia. Neuropsychologia, 36(11), 1189–202.

    PubMed  Google Scholar 

  • Bishop, D. (2002). Cerebellar abnormalities in developmental dyslexia: Cause, correlates or consequence. Cortex, 38, 491–498.

    PubMed  Google Scholar 

  • Bishop, D. V. (2007). Using mismatch negativity to study central auditory processing in developmental language and literacy impairments: where are we, and where should we be going? Psychological Bulletin, 133, 651–672.

    PubMed  Google Scholar 

  • Blomert, L. (2011). The neural signature of orthographic-phonological binding in successful and failing reading development. Neuroimage 57, 695–703.

    PubMed  Google Scholar 

  • Bower, J. M., & Parsons, L. M. (2003). Rätsel Kleinhirn. Spektrum der Wissenschaft, 11, 60.

    Google Scholar 

  • Breitmeyer, B. G. (1980). Unmasking visual masking: A look at the "why" behind the veil of the "how." Psychological Review, 87, 52–69.

    PubMed  Google Scholar 

  • Breitmeyer, B. G. (1993). Sustained (P) and transient (M) channels in vision: A review and implications for reading. In D. M. Willow, R. S. Kruk, & E. Corcos (Hrsg.), Visual Processes in reading and reading disabilities (S. 95–110). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Brendler, K., & Lachmann, T. (2001). Letter reversals in the context of the Functional Coordination Deficit Model of developmental dyslexia. In E. Sommerfeld, R. Kompass, & T. Lachmann (Hrsg.), Proceedings of the International Society for Psychophysics (S. 308–313). Lengerich: Pabst Science Publishers.

    Google Scholar 

  • Bretherton, L., & Holmes, V. M. (2003). The relationship between auditory temporal processing, phonemic awareness, and reading disability. Journal of Experimental Child Psychology, 84(3), 218–243.

    PubMed  Google Scholar 

  • Bruck, M. (1992). Persistence of dyslexics’ phonological awareness deficits. Developmental Psychology, 28, 874–886.

    Google Scholar 

  • Burgund, E. D., Schlaggar, B. L. & Petersen, S. E. (2006). Development of letter-specific processing: The effect of reading ability. Acta Psychologica, 122, 99–108.

    PubMed  Google Scholar 

  • Burr, D. C., Morrone, M. C. & Ross, J. (1994). Selective suppression of magnocellular visual pathway during saccadic eye movements. Nature, 371, 511–513.

    PubMed  Google Scholar 

  • Bus, A. G., & van Ijzendoorn, M. H. (1999). Phonological awareness and early reading: A meta-analysis of experimental training studies. Journal of Educational Psychology, 91(3), 403–414.

    Google Scholar 

  • Cammann, R. (1990). Is there no MMN in the visual modality? Behavioral and Brain Sciences, 13, 234–234.

    Google Scholar 

  • Coltheart, M., Rastle, K., Perry, C., Langdon, R. & Ziegler, J. (2001). DRC: A dual-route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204–256.

    PubMed  Google Scholar 

  • Corballis, M. C., & Beale, I. L. (1993). Orton revisited: Dyslexia, laterality, and left-right confusion. In D. M. Willows, R. S. Kruk, & E. Corcos (Hrsg.), Visual processes in reading and reading disabilities (S. 57–73). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Cornelissen, P. L., Richardson, A. R., Mason, A., Fowler, M. S., & Stein, J. F. (1995). Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls.Vision Research, 35, 1483–1494.

    PubMed  Google Scholar 

  • DeFries, J. C., & Alarcon, M. (1996). Genetics of specific reading disability. Mental Retardation and Developmental Disabilities Research Reviews, 2, 39–47.

    Google Scholar 

  • Dehaene, S., & Cohen, L. (2007). Cultural Recycling of Cortical Maps. Neuron, 56, 384–398.

    PubMed  Google Scholar 

  • Démonet, J.-F., Taylor, M. J. & Chaix, Y. (2004). Developmental dyslexia. The Lancet, 363, 1451–1460.

    Google Scholar 

  • Dow, R. S., & Moruzzi, G. (1958). The physiology and pathology of the cerebellum. New York: Academic Press.

    Google Scholar 

  • Duñabeitia, J. A., Dimitropoulou, M., Estévez, A., & Carreiras, M. (2013). The influence of reading expertise in mirror-letter perception: evidence from beginning and expert readers. Mind, Brain, and Education, 7(2), 124–135.

    Google Scholar 

  • Eden, G. F., Stein, J. F., Wood, H. M., & Wood, F. B. (1994). Differences in eye movements and reading problems in dyslexic and normal children. Vision Research, 34, 1345–1358.

    PubMed  Google Scholar 

  • Eden, G. F., VanMeter, J. M., Rumsey, J. W., Maisog, J., & Zeffiro, T. A. (1996). Functional MRI reveals differences in visual motion processing in individuals with dyslexia. Nature, 382, 66–69.

    PubMed  Google Scholar 

  • Ehri, L. (1999). Phases of development in learning to read words. In J. Oakhill, & R. Beard (Hrsg.), Reading development and the teaching of reading: A psychological perspective (S. 79–108). Oxford, UK: Blackwell Publishers.

    Google Scholar 

  • Ehri, L. C., Nunes, S. R., Willows, D. M., Schuster, B. V., Yaghoub-Zadeh, Z., & Shanahan, T. (2001). Phonemic awareness instruction helps children learn to read: Evidence from the National Reading Panel´s meta-analysis. Reading Research Quarterly, 36(3), 250–287.

    Google Scholar 

  • Farmer, M. E., & Klein, R. M. (1995). The evidence for a temporal processing deficit linked to dyslexia: A review. Psychonomic Bulletin & Review, 2 (4). 460–493.

    Google Scholar 

  • Fawcett, A. (2002). Dyslexia, the cerebellum and phonological skill. In E. Witruk, A. D. Friederici & T. Lachmann (Hrsg.) Basic functions of language, reading and reading disability (S. 265–279). Boston: Kluwer/Springer.

    Google Scholar 

  • Fawcett, A., & Nicolson, R. I. (2001). Dyslexia: The role of the cerebellum. In A. Fawcett (Hrsg.), Dyslexia: Theory and good practice (S. 89–105) London: Whurr.

    Google Scholar 

  • Fawcett, A., Nicolson, R. I., & Dean, P. (1996). Impaired performance of children with dyslexia on a range of cerebellar tasks. Annals of Dyslexia, 46, 259–283.

    PubMed  Google Scholar 

  • Fischer, B., & Hartnegg, K. (2008). Saccade control in dyslexia: development, deficits, training and transfer to reading. Optometry and Vision Development, 39, 181–190.

    Google Scholar 

  • Friend, A., DeFries, J. C., & Olson, R. K. (2008). Parental education moderates genetic influences on reading disability. Psychological Science, 19(11), 1124–1130.

    PubMed Central  PubMed  Google Scholar 

  • Frith, U. (1986). A developmental framework for developmental dyslexia. Annals of Dyslexia, 36, 69–81.

    Google Scholar 

  • Frith, U. (1999). Paradoxes in the definition of dyslexia. Dyslexia, 5, 192–214.

    Google Scholar 

  • Frith, U. (2001). What framework should we use for understanding developmental disorders? Developmental Neuropsychology, 20(2), 555–563.

    Google Scholar 

  • Frith, C., & Frith, U. (1996). A biological marker for dyslexia. Nature, 382, 19–20.

    PubMed  Google Scholar 

  • Fuchs, S., & Lachmann, T. (2003). Functional coordination deficit in children with developmental dyslexia. In B. Berglund & E. Borg (Hrsg.), Fechner Day 2003 (S. 87–90). Stockholm: The International Society for Psychophysics.

    Google Scholar 

  • Gaab, N., Gabrieli, J. D. E., Deutsch, G. K., Tallal, P., & Temple, E. (2007). Neural correlates of rapid auditory processing are disrupted in children with developmental dyslexia and ameliorated with training: An fMRI study. Restorative Neurology and Neuroscience, 25, 295–310.

    PubMed  Google Scholar 

  • Gabrieli, J. D. E. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. Science, 325, 280–283.

    PubMed  Google Scholar 

  • Galaburda, A. (2002). Anatomy of the temporal processing deficit in developmental dyslexia. In E. Witruk, A. D. Friederici, & T. Lachmann (Hrsg.), Basic functions of language, reading and reading disability (S. 241–250). Boston: Kluwer/Springer.

    Google Scholar 

  • Galaburda, A. M., Menard, M. T., & Rosen G. D. (1994). Evidence for aberrant auditory anatomy in developmental dyslexia. Proceedings of the National Academy of Science USA, 91, 8010–8013.

    Google Scholar 

  • Gayan, J. & Olson, R. K. (2001). Genetic and environmental influences on orthographic and phonological skills in children with reading disabilities. Developmental Neuropsychology, 20(2), 483–507.

    PubMed  Google Scholar 

  • Goswami, U. (2011). A temporal sampling framework for developmental dyslexia. Trends in Cognitive Sciences, 15, 3–10.

    PubMed  Google Scholar 

  • Goswami, U., Thomson, J., Richardson, U., Stainthorp, R., Hughes, D., Rosen, S. & Scott, S. K. (2002). Amplitude envelope onsets and developmental dyslexia: A new hypothesis. Proceedings of the National Academy of Sciences, 99(16), 10911–10916.

    Google Scholar 

  • Grant, A. C., Zangaladze, A., Thiagarajah, M., & Saathian, K. (1999). Tactile perception in dyslexics. Neuropsychologia, 37, 1201–1211.

    Google Scholar 

  • Groth, K., Lachmann, T., Riecker, A., Muthmann, I., & Steinbrink, C. (2011). Developmental dyslexics show deficits in the processing of temporal auditory information in German vowel length discrimination. Reading and Writing, 24, 285–303.

    Google Scholar 

  • Habib, M. (2000). The neurological basis of developmental dyslexia: An overview and working hypothesis. Brain, 123, 2373–2399.

    PubMed  Google Scholar 

  • Hämäläinen, J. A., Salminen, H. K., & Leppänen, P. H. T. (2013). Basic auditory processing deficits in dyslexia: Systematic review of the behavioural and event-related potential/field evidence. Journal of Learning Disabilities, 46, 413–427.

    PubMed  Google Scholar 

  • Hautus, M. J., Setchell, G. J., Waldie, K. E., & Kirk, I. J. (2003). Age-related improvements in auditory temporal resolution in reading-impaired children. Dyslexia, 9, 37–45.

    PubMed  Google Scholar 

  • Heim, S., Tschierse, J., Amunts, K., Wilms, M., Vossel, S., Willmes, K., Grabowska, A., & Huber W. (2008). Cognitive subtypes of dyslexia. Acta Neurobiologiae Experimentalis, 68, 73–82.

    PubMed  Google Scholar 

  • Holmes, G. (1917). The symptoms of acute cerebellar injuries due to gunshot injuries. Brain, 40, 461–535.

    Google Scholar 

  • Hulme, C. (1988). The implausibility of low-level visual deficits as a cause of children’s reading difficulties. Cognitive Neuropsycholoy, 5, 369–374.

    Google Scholar 

  • Hulme, C., & Snowling, M. J. (2009). Reading Disorders I: Developmental Dyslexia. In C. Hulme, & M. Snowling (Hrsg.), Developmental Disorders of Language Learning and Cognition (S. 37–89). Chichester: Wiley-Blackwell.

    Google Scholar 

  • Hulslander, J., Talcott, J., Witton, C., DeFries, J., Pennington, B., Wadsworth, S. et al. (2004). Sensory processing, reading, IQ and attention. Journal of Experimental Child Psychology, 88, 274–295.

    PubMed  Google Scholar 

  • Johannes, S., Kussmaul, C. L., Munte, T. F., & Mangun, G. R. (1996). Developmental dyslexia: passive visual stimulation provides no evidence for a magnocellular processing defect. Neuropsychologia, 34, 1123–1127.

    PubMed  Google Scholar 

  • Jusczyk, P. W. (2000). The discovery of spoken language. Cambridge, MA: MIT Press.

    Google Scholar 

  • Klatte, M., Bergström, K., & Lachmann, T. (2013). Does noise affect learning? A short review of noise effects on cognitive performance in children. Frontiers in Developmental Psychology, 4, 578. DOI: 10.3389/fpsyg.2013.00578

    Google Scholar 

  • Lachmann, T. (2002). Reading disability as a deficit in functional coordination and information integration. In E. Witruk, A. D. Friederici & T. Lachmann (Hrsg.), Basic functions of language, reading and reading disability (S. 165–198). Boston: Kluwer/Springer.

    Google Scholar 

  • Lachmann, T. (2008). Experimental approaches to specific disabilities in learning to read: The case of Symmetry Generalization in developmental dyslexia. In N. Srinivasan, A. K. Gupta & J. Pandey (Hrsg.), Advances in Cognitive Science (S. 321–342). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Lachmann, T., & Geissler, H. G. (2002). Memory search instead of template matching?: Representation-guided inference in same–different performance. Acta Psychologica, 111(3), 283–307.

    PubMed  Google Scholar 

  • Lachmann, T., & Geyer, T. (2003). Letter reversals in developmental dyslexia: Is the case really closed? A critical review and conclusions. Psychology Science, 45, 53–75.

    Google Scholar 

  • Lachmann, T. & van Leeuwen, C. (2004). Negative congruence effects in letter and pseudo-letter recognition: The role of similarity and response conflict. Cognitive Processing, 5(4), 239–248.

    Google Scholar 

  • Lachmann, T., & van Leeuwen, C. (2007). Paradoxical enhancement of letter recognition in developmental dyslexia. Developmental Neuropsychology, 31, 61–77.

    PubMed  Google Scholar 

  • Lachmann, T., & van Leeuwen, C. (2008a). Differentiation of holistic processing in the time course of letter recognition. Acta Psychologica, 129, 121–129.

    Google Scholar 

  • Lachmann, T., & van Leeuwen, C. (2008b). Different letter-processing strategies in diagnostic subgroups of developmental dyslexia. Cognitive Neuropsychology, 25, 730–744.

    Google Scholar 

  • Lachmann, T., Berti, S., Kujala, T., & Schröger, E. (2005). Diagnostic subgroups of developmental dyslexia have different deficits in neural processing of tones and phonemes. International Journal of Psychophysiology, 56, 105–120.

    PubMed  Google Scholar 

  • Lachmann, T., Schumacher, B. & van Leeuwen, C. (2009). Controlled but independent: Effects of mental rotation and developmental dyslexia in dual task settings. Perception, 38, 1019–1034.

    PubMed  Google Scholar 

  • Lachmann, T., Steinbrink, C., Schumacher, B. & van Leeuwen, C. (2010). Different letter-processing strategies in diagnostic subgroups of developmental dyslexia occur also in a transparent orthography: Reply to a commentary by Spinelli et al. Cognitive Neuropsychology, 26, 759–768.

    Google Scholar 

  • Lachmann, T., Khera, G., Srinivasan, N., & van Leeuwen, C. (2012). Learning to read aligns visual analytical skills with grapheme-phoneme mapping: Evidence from illiterates. Frontiers in Evolutionary Neuroscience, 4(8). DOI: 10.3389/fnevo.2012.00008

    Google Scholar 

  • Lehmkuhle, S. (1993). Neurological basis of visual processes in reading. In D. M. Willow, R. S. Kruk, & E. Corcos (Hrsg.), Visual Processes in reading and reading disabilities (S. 77–94) Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Levinson, H. N. (1988). The cerebellar-vestibular basis of learning disabilities in children, adolescents, and adults: hypothesis and study. American Psychiatric Association Annual Meeting New Research Session. Perceptual and Motor Skills, 67, 983–1006.

    PubMed  Google Scholar 

  • Ligges, C., & Blanz, B. (2007). Übersicht über Bildgebungsbefunde zum phonologischen Defizit der Lese-Rechtschreibstörung bei Kindern und Erwachsenen: Grundlegende Defizite oder Anzeichen von Kompensation? Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie, 35(2), 107–117.

    PubMed  Google Scholar 

  • Livingstone, M. S., Rosen, G. D., Drislane, F. W., & Galaburda, A. M. (1991). Physiological and anatomical evidence for a magnocellular deficit in developmental dyslexia. Proceedings of the National Academy of Science USA, 88, 7943–7947.

    Google Scholar 

  • Lovegrove, W. J., Martin, F., Blackwood, M., & Badcock, D. (1980). Specific reading disability: Differences in contrast sensitivity as a function of spatial frequency. Science, 210, 439–440.

    PubMed  Google Scholar 

  • Lyytinen, H., Aro, M., Eklund, K., Erskine, J., Guttorm, T., Laakso, M.-L., Leppänen, P.H.T., Lyytinen, P., Poikkeus, A., Richardson, U., & Torppa, M. (2004). The development of children at familial risk for dyslexia: Birth to early school age. Annals of Dyslexia, 54, 184–220.

    PubMed  Google Scholar 

  • Maddock, H., Richardson, A., & Stein, J. F. (1992). Reduced and delayed visual evoked potentials in dyslexics. Journal of Physiology, 459, 130.

    Google Scholar 

  • Martin, F., & Lovegrove, W. (1987). Flicker contrast sensitivity in normal and specifically disabled readers. Perception, 16, 215–221.

    PubMed  Google Scholar 

  • McAnally, K. I., & Stein, J. F. (1996). Abnormal auditory transient brainstem function in dyslexia. Proceedings of the Royal Society, B, 263, 961–965.

    Google Scholar 

  • Menell, P., McAnally, K. I., & Stein, J. F. (1999). Psychophysical and physiological responses to amplitude modulation in dyslexia. Journal of Speech and Hearing Research, 42, 797–803.

    Google Scholar 

  • Merzenich, M. M., Jenkins, W. M., Johnston, P., Schreiner, C., Miller, S., & Tallal, P. (1996). Temporal processing deficits of language-learning impaired children ameliorated by stretching speech. Science, 271, 77–81.

    PubMed  Google Scholar 

  • Müller, D., Widmann, A., & Schröger, E. (2013). Object-related regularities are processed automatically: Evidence from the visual mismatch negativity. Frontiers in Human Neuroscience, 7, 259.

    PubMed Central  PubMed  Google Scholar 

  • Näätänen, R. (2000). Mismatch Negativity (MMN): perspectives for application. International Journal of Psychophysiology, 27, 3–10.

    Google Scholar 

  • Näätänen, R., Paavilainen, P., Rinne, T. & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clinical Neurophysiology, 118, 2544–2590.

    PubMed  Google Scholar 

  • Nicolson, R. I., & Fawcett, A. (1990). Automaticity: a new framework for dyslexia research? Cognition, 35, 159–182.

    PubMed  Google Scholar 

  • Nicolson, R. I., & Fawcett, A. (1999). Developmental Dyslexia: the role of the cerebellum. Dyslexia, 5, 155–177.

    Google Scholar 

  • Nicolson, R. I., & Fawcett, A. (2011). Dyslexia, dysgraphia, procedural learning and the cerebellum. Cortex, 47, 117–127.

    PubMed  Google Scholar 

  • Nicolson, R. I., Fawcett, A., Brookes, R. L., & Needle, J. (2010). Procedural lerning and dyslexia. Dylsexia, 16, 194–212.

    Google Scholar 

  • Nittrouer, S. (1999). Do temporal processing deficits cause phonological processing problems? Journal of Speech Language and Hearing Research, 42(4), 925–942.

    Google Scholar 

  • Olson R. K., Kliegel, R., & Davidson B. J. (1983). Individual and develpmental differences in reading disability. In G.E. MacKinnon, T.G. Waller (Hrsg.), Reading research: Advances in theory and practice (S. 1–64). NY: Academic.

    Google Scholar 

  • Papadopoulos, T. C., Georgiou, G. K., & Parrila, R. K. (2012). Low-level deficits in beat perception: Neither necessary nor sufficient for explaining developmental dyslexia in a consistent orthography. Research in Developmental Disabilities, 33, 1841–1856.

    PubMed  Google Scholar 

  • Paulesu, E., Frith, U., Snowling, M., Gallagher, A., Morton, J., Frackowiack, R. S. J., & Frith, C. D. (1996). Is developmental dyslexia a disconnection syndrome? – Evidence from PET scanning. Brain, 119, 143–157.

    PubMed  Google Scholar 

  • Pennington, B. F., & Lefly, D. L. (2001). Early reading development in children at family risk for dyslexia. Child Development, 72, 816–833.

    PubMed  Google Scholar 

  • Pennington, B. E., & Olson, R. K. (2007). Genetics of Dyslexia. In M. J. Snowling & C. Hulme (Hrsg.), The Science of Reading – A Handbook (S. 453–472). Oxford: Blackwell.

    Google Scholar 

  • Perea, M., Moret-Tatay, C., & Panadero, V. (2011). Suppression of mirror generalization for reversible letters: evidence from masked priming. Journal of Memory and Language, 65, 237–246.

    Google Scholar 

  • Pegado, F., Nakamura, K., Cohen, L., & Dehaene, S. (2011). Breaking the symmetry: mirrordiscrimination for single letters but not for pictures in the Visual Word Form Area. Neuroimage 55, 742–774.

    PubMed  Google Scholar 

  • Pollatsek, A. (1993). Eye movements in reading. In D. M. Willow, R. S. Kruk & E. Corcos (Hrsg.), Visual Processes in reading and reading disabilities (S. 191–214). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Pugh, K. R., Mencl, W. E., Jenner, A. R., Katz, L., Frost, S. J., Ren Lee, J., Shaywitz, S. E., & Shaywitz, B. A. (2000). Functional neuroimaging studies of reading and reading disability (developmental dyslexia). Mental Retardation and Developmental Disabilities Research Reviews, 6, 207–213.

    PubMed  Google Scholar 

  • Pulvermüller, F., & Shtyrov, Y. (2003). Automatic processing of grammar in the human brain as revealed by mismatch negativity. NeuroImage, 20, 159–172.

    PubMed  Google Scholar 

  • Ramus, F. (2003). Developmental dyslexia: specific phonological deficit or general sensorimotor dysfunction? Current Opinion in Neurobiology, 13(2), 212–218.

    PubMed  Google Scholar 

  • Ramus, F., Pidgeon, E. & Frith, U. (2003a). The relationship between motor control and phonology in dyslexic children. Journal of Child Psychology and Psychiatry, 44(5), 712–722.

    Google Scholar 

  • Ramus, F., Rosen, S., Dakin, S. C., Day, B. L., Castellote, J. M., White, S. & Frith, U. (2003b). Theories of developmental dyslexia: insights from a multiple case study of dyslexic adults. Brain, 126, 841–865.

    Google Scholar 

  • Richlan, F., Kronbichler, M. & Wimmer, H. (2009). Functional abnormalities in the dyslexic brain: A quantitative meta-analysis of neuroimaging studies. Human Brain Mapping, 30, 3299–3308.

    PubMed Central  PubMed  Google Scholar 

  • Rusiak, P., Lachmann, T., Jaskowski, P., & van Leeuwen, C. (2007). Mental rotation of letters and shapes in developmental dyslexia. Perception, 36, 617–631.

    PubMed  Google Scholar 

  • Samuelsson, S., Olson, R., Wadsworth, S., Corley, R., DeFries, J. C., Willcutt, E., Hulslander, J., & Byrne, B. (2007). Genetic and environmental influences on prereading skills and early reading and spelling development in the United States, Australia and Scandinavia. Reading and Writing, 20, 51–75.

    Google Scholar 

  • Sandak, R., Mencl, W. E., Frost, S. J., & Pugh, K. R. (2004). The neurobiological basis of skilled and impaired reading: Recent findings and new directions. Scientific Studies of Reading, 8(3), 273–292.

    Google Scholar 

  • Scarborough, H. S. (1990). Very early language deficits in dyslexic children. Child Development, 61, 1728–1743.

    PubMed  Google Scholar 

  • Schulte-Körne, G., Deimel. W., Bartling, J., & Remschmidt, H. (1998). Auditory processing and dyslexia: evidence for a specific speech processing deficit. Neuroreport, 9, 337–340.

    PubMed  Google Scholar 

  • Schulte-Körne, G., Warnke, A., & Remschmidt, H. (2006). Zur Genetik der Lese-Rechtschreibschwäche. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie, 34(6), 435–444.

    PubMed  Google Scholar 

  • Schwartz, B. D., Tomlin, H. R., Evans, W. J., & Ross, K. V. (2001). Neurophysiologic mechanisms of attention: a selective review of early information processing in schizophrenics. Frontiers in Bioscience, 6, 120–134.

    Google Scholar 

  • Shaywitz, S. E., & Shaywitz, B. E. (2005). Dyslexia (specific reading disability). Biological Psychiatry, 57, 1301–1309.

    PubMed  Google Scholar 

  • Singer, W., & Bedworth, N. (1973). Inhibitory interactions between X and Y units in cat lateral geniculate nucleus. Brain Research, 49, 291–307.

    PubMed  Google Scholar 

  • Skottun, B. C. (2000). The magnocellular deficit theory of dyslexia; the evidence from contrast sensitivity. Vision Research, 40, 111–127.

    PubMed  Google Scholar 

  • Slaghuis, W. L., & Ryan, J. F. (1999). Spatial-temporal contrast sensitivity, coherent motion, and visual persistence in developmental dyslexia. Vision Reseach, 39, 651–668.

    Google Scholar 

  • Snowling, M. (2000). Dyslexia. Oxford: Blackwell.

    Google Scholar 

  • Stanovich, K. E. (1988). Explaining the differences between the dyslexic and the garden-variety poor reader: The phonological-core variable-difference model. Journal of Learning Disabilities, 21(10), 590–604.

    PubMed  Google Scholar 

  • Stein, J. F. (1993). Visuospatial perception in disabled readers. In D. M. Willow, R. S. Kruk & E. Corcos (Hrsg.), Visual Processes in reading and reading disabilities (S. 331–346). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Stein, J. F. (2001). The magnocellular theory of dyslexia. Dyslexia, 7, 12–36.

    PubMed  Google Scholar 

  • Stein, J. (2002). The neurobiology of reading difficulties. In E. Witruk, A. D. Friederici, & T. Lachmann (Hrsg.), Basic functions of language, reading and reading disability (S. 199–211). Boston: Kluwer/Springer.

    Google Scholar 

  • Stein, J. F., & Glickstein, M. (1992). The role of the cerebellum in the visual guidance of movement. Physiological Review, 72, 967–1018.

    Google Scholar 

  • Stein, J. F., & Talcott, J. B. (1999). The magnocellular theory of dyslexia. Dyslexia, 5, 59–78.

    Google Scholar 

  • Stein, J., Talcott, J., & Witton, C. (2001). The sensorimotor basis of developmental dyslexia. In A. Fawcett (Hrsg.). Dyslexia. Theory and good practice (S. 65–88). London: Whurr.

    Google Scholar 

  • Stein, J. F., & Walsh, V. (1997). To see but not to read; magnocellular theory of dyslexia. Trends in Neurosciences, 20, 147–152.

    PubMed  Google Scholar 

  • Steinbrink, C., Ackermann, H., Lachmann, T., & Riecker, A. (2009). Contribution of the anterior insula to temporal auditory processing deficits in developmental dyslexia. Human Brain Mapping, 30, 2401–2411.

    PubMed  Google Scholar 

  • Steinbrink, C., Groth, K., Lachmann, T., & Riecker, A. (2012). Neural correlates of temporal auditory processing in dyslexia during German vowel length discrimination: An fMRI study. Brain and Language, 121, 1–11.

    PubMed  Google Scholar 

  • Steinbrink, C., & Klatte, M. (2008). Phonological working memory in German children with poor reading and spelling abilities. Dyslexia, 14(4), 271–290.

    PubMed  Google Scholar 

  • Steinbrink, C., Vogt, K., Kastrup, A., Müller, H.-P., Juengling, F. D., Kassubek, J., & Riecker, A. (2008). The contribution of white and gray matter differences to developmental dyslexia – Insights from DTI and VBM at 3.0 Tesla. Neuropsychologia, 46(13), 3170–3178.

    PubMed  Google Scholar 

  • Steinbrink, C., Zimmer, K., Lachmann, T., Dirichs, M., & Kammer, T. (im Druck). Development of rapid temporal processing and its impact on literacy skills in primary school children. Child Development. DOI: 10.1111/cdev.12208

    Google Scholar 

  • Stoodley, C. J., & Stein, J. F. (2011). The cerebellum and dyslexia. Cortex, 47, 101–116.

    PubMed  Google Scholar 

  • Swan, D., & Goswami, U. (1997). Picture naming deficits in developmental dyslexia: The phonological representations hypothesis. Brain and Language, 56, 334–353.

    PubMed  Google Scholar 

  • Talcott, J. B., & Witton, C. (2002). A sensory-linguistic approach to normal and impaired reading development. In E. Witruk, A. D. Friederici, & T. Lachmann (Hrsg.), Basic Functions of Language, Reading and Reading Disability (S. 213–240). Dordrecht, Netherlands: Kluwer.

    Google Scholar 

  • Talcott, J. B., Hansen, P. C., Willis-Owen, C., McKinnell I. W., Richardson A. J., & Stein, J. F. (1998). Visual magnocellular impairment in adult developmental dyslexics. Neuroophthalmology, 20, 187–201.

    Google Scholar 

  • Talcott, J. B., Witton, C., McLean, M. F., Hansen, P. C., Rees, A., Green, G. G. R., & Stein, J. F. (2000). Dynamic sensory sensitivity and children’s word decoding skills. Proceedings of the National Academy of Sciences, 97, 2952–2957.

    Google Scholar 

  • Talcott, J. B., Gram, A., van Ingelghem, M., Witton, C., Stein, J. F., & Toennessen, F. E. (2003). Impaired sensitivity to dynamic stimuli in poor readers of a regular orthography. Brain and Language, 87, 259–266.

    Google Scholar 

  • Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain and Language, 9, 182–198.

    PubMed  Google Scholar 

  • Tallal, P. (2000). Experimental studies of language learning impairments: From research to remediation. In D. B. Bishop & L. B. Leonard (Hrsg.), Speech and language impairments in children (S. 131–155). Hove: Psychology Press.

    Google Scholar 

  • Tallal, P., & Gaab, N. (2006). Dynamic auditory processing, musical experience and language development. Trends in Neurosciences, 29, 382–390.

    PubMed  Google Scholar 

  • Tallal, P., Miller, S., & Fitch, R. H. (1993). Neurobiological basis of speech: A case for the preeminence of temporal processing. Annals of the New York Academy of Sciences, 682, 27–47.

    PubMed  Google Scholar 

  • Tallal, P., Miller, S. L., Bedi, G., Byma, G., Wang, X., Nagarajan, S. S., Schreiner, C., Jenkins, W.M, & Mezenich, M.M. (1996). Language comprehension in language-learning impaired children improved with acoustically modified speech. Science, 271, 81–84.

    PubMed  Google Scholar 

  • Temple, E., Poldrack, R. A., Protopapas, A., Nagarajan, S., Salz, T., Tallal, T., Merzenich, M. M., & Gabrieli, J. D. E. (2000). Disruption of the neural response to rapid acoustic stimuli in dyslexia: Evidence from functional MRI. Proceedings of the National Academy of Sciences, 97(25), 13907–13912.

    Google Scholar 

  • Temple, E., Deutsch, G. K., Poldrack, R. A., Miller, S. L., Tallal, P., Merzenich, M. M., & Gabrieli, J. D. E. (2003). Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI. Proceedings of the National Academy of Sciences, 100, 2860–2865.

    Google Scholar 

  • Vellutino, F. R., & Fletcher, J. M. (2007). Developmental dyslexia. In M. J. Snowling and C. Hulme (Hrsg.), The science of reading. A handbook (S. 362–378). Oxford: Blackwell.

    Google Scholar 

  • Victor, J. D., Conte, M. M., Burton, L. & Nass, R. D. (1993). Visual evoked potentials in dyslexics and normals: failure to find a difference in transient or steady-state responses. Visual Neuroscience, 10, 939–946.

    PubMed  Google Scholar 

  • White, S., Frith, U., Milne, E., Rosen, S., Swettenham, J., & Ramus, F. (2006a). A double dissociation between sensorimotor impairments and reading disability: A comparison of autistic and dyslexic children. Cognitive Neuropsychology, 23(5), 748–761.

    PubMed  Google Scholar 

  • White, S., Milne, E., Rosen, S., Hansen, P., Swettenham, J., Frith, U., & Ramus, F. (2006b). The role of sensorimotor impairments in dyslexia: a multiple case study of dyslexic children. Developmental Science, 9(3), 237–255.

    PubMed  Google Scholar 

  • Witton C., Talcott J. B., Hansen P. C., Richardson, A. J., Griffiths T. D., Rees A., Stein J. F., & Green, G. G. (1998). Sensitivity to dynamic auditory and visual stimuli predicts nonword reading ability in both dyslexic and normal readers. Current Biology, 8, 791–797.

    PubMed  Google Scholar 

  • Witton, C., Stein, J. F., Stoodley, C. J., Rosner, B. S., & Talcott, J. B. (2002). Separate influences of acoustic AM and FM sensitivity on the phonological decoding skills of impaired and normal readers. Journal of Cognitive Neuroscience, 14, 866–874.

    PubMed  Google Scholar 

  • Ziegler, J. C, Pech-Georgel, C., George, F., & Lorenzi, C. (2009). Speech-perception-in-noise deficits in dyslexia. Developmental Science, 12(5), 732–745.

    PubMed  Google Scholar 

Weiterführende Literatur:

  • Fawcett, A. (2001) Dyslexia Theory and good practice. London: Whurr.

    Google Scholar 

  • Gabrieli, J. D. E. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. Science, 325, 280–283.

    PubMed  Google Scholar 

  • Hulme, C., & Snowling, M. J. (2009). Reading Disorders I: Developmental Dyslexia. In C. Hulme, & M. Snowling (Hrsg.), Developmental Disorders of Language Learning and Cognition (S. 37–89). Oxford: Wiley-Blackwell.

    Google Scholar 

  • Pennington, B. E., & Olson, R. K. (2007). Genetics of Dyslexia. In M. J. Snowling, & C. Hulme (Hrsg.), The Science of Reading – A Handbook (S. 453–472). Oxford: Blackwell.

    Google Scholar 

  • Schulte-Körne, G., Warnke, A., & Remschmidt, H. (2006). Zur Genetik der Lese-Rechtschreibschwäche. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie, 34(6), 435–444.

    PubMed  Google Scholar 

  • Willows, D.M., Kruk, R. S., & Corcos, E. (1993) Visual processes in reading and reading disabilities. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Witruk, E., Friederici, A. D., & T. Lachmann (2002). Basic functions of language, reading and reading disability. Boston: Kluwer/Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Steinbrink PD .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steinbrink, C., Lachmann, T. (2014). Ursachen der Lese-Rechtschreibstörung. In: Lese-Rechtschreibstörung. Springer VS, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41842-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41842-6_4

  • Published:

  • Publisher Name: Springer VS, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41841-9

  • Online ISBN: 978-3-642-41842-6

  • eBook Packages: Humanities, Social Science (German Language)

Publish with us

Policies and ethics