Skip to main content

Advanced Molecular and Microspectroscopy Toolbox for Deciphering Soil Diazotroph Diversity

  • Chapter
  • First Online:
Geomicrobiology and Biogeochemistry

Part of the book series: Soil Biology ((SOILBIOL,volume 39))

  • 2529 Accesses

Abstract

Microbial diversity is microbial species richness and evenness in a given niche at particular time. Microbes represent richest diversity including members which may be cultured or cannot be cultured on defined media. Accurate identification and characterization of both culturable and unculturable microbes require employing diverse phenetic, molecular, and system biology tools. However, certain advanced molecular approaches not only unravel microbial diversity but also the microbial community structure and functions performed by specific group or genera of microbes. Molecular toolbox is instrumental in deciphering unculturable microbial diversity paving toward discovery of new genera or species. Molecular microbial ecology has increased our understanding of the role and phylogeny of several bacterial populations, their interdependencies, and functional networks with other genera/species. These include nucleic acid hybridization methods evolving to high throughput, automated, and versatile gene amplification and marker-assisted selection methods like RFLP, r-DNA profiling, nif H gene profiling, and FISH that aim to investigate community diversity using specific signature gene sequences. Today, brigade of novel techniques like single cell microecophysiology are available which can be useful for directly observing as well as quantifying the metabolic activities of microbes in their natural environment. These techniques would further enhance our understanding of relative contribution of various microbial groups to specific microbially catalyzed processes such as biogeochemical cycling (nitrogen fixation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeinas SG, Rodriguez-Valera F, Pedros-Alio C (1997) Spatial and temporal variation in marine bacterioplankton diversity as shown by RFLP fingerprinting of PCR amplified 16S rDNA. FEMS Microbial Ecol 24:27–40

    Google Scholar 

  • Allwood JW, Heald J, Lloyd AJ, Goodzcre R, Mur LAJ (2012) Separating the inseparable: the metabolomic analysis of plant-pathogen interactions. In: Hardy NW, Hall RD (eds) Plant metabolomics: methods and protocols, methods in molecular biology, vol 860, pp 31–49. doi:10.1007/978-1-61779-594-7_3

  • Antony T, Subramaniam V (2001) Molecular beacons: nucleic acid hybridization and emerging applications. J Biomol Struct Dyn 19:497–504

    Google Scholar 

  • Arias ME, González-Pérez JA, González-Vila FJ, Ball AS (2005) Soil health – a new challenge for microbiologists and chemists. Int Microbiol 8:13–21

    Google Scholar 

  • Babalola OO (2003) Molecular techniques: an overview of methods for the detection of bacteria. Afr J Biotechnol 2(12):710–713

    Google Scholar 

  • Bardgett RD, Mawdsley JL, Edwards S, Hobbs PJ, Rodwell JS, Davis WJ (1999) Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct Ecol 13:650–660

    Google Scholar 

  • Benndorf D, Balcke GU, Harms H, von Bergen M (2007) Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. ISME J 1:224–234. doi:10.1038/ismej.2007.39

    Google Scholar 

  • Berlec A (2012) Data obtained by proteomics on functions of specific proteins extends the scope of the study from community composition to identification of niche-specific genes. Plant Sci 193–194:96–102

    Google Scholar 

  • Bhat MI, Rasool F, Bhat MA (2010) Applications of stable and radioactive isotopes in soil science. Curr Sci 98:1458–1471

    Google Scholar 

  • Bohannan BJM, Hughes J (2003) New approaches to analyzing microbial biodiversity data. Curr Opin Microbiol 6:282–287

    Google Scholar 

  • Boxer SG, Kraft ML, Weber PK (2009) Advances in imaging secondary ion mass spectrometry for biological samples. Annu Rev Biophys 38:53–74

    Google Scholar 

  • Buckley DH, Schmidt TM (2001) The structure of microbial communities in soil and the lasting impact of cultivation. Microb Ecol 42:11–21

    Google Scholar 

  • Burgmann H, Widmer F, Von Sigler W, Zeyer J (2004) New molecular screening tools for analysis of free-living diazotrophs in soil. Appl Environ Microbiol 70:240–247

    Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Google Scholar 

  • Carvalhais LC, Dennis PG, Tyson GW, Schenk PM (2012) Application of metatranscriptomics to soil environments. J Microbiol Methods 91:246–251. doi:10.1016/j.mimet.2012.08.011

    Google Scholar 

  • Cheng Z, McConkey BJ, Glick BR (2010) Proteomic studies of plant-bacterial interactions. Soil Biol Biochem 42:1673–1684

    Google Scholar 

  • Chourey K, Jansson J, VerBerkmoes N, Shah M, Chavarria KL, Tom LM, Brodie EL, Hettich RL (2010) Direct cellular lysis/protein extraction protocol for soil metaproteomics. J Proteome Res 9:6615–6622

    Google Scholar 

  • Clode PL, Kilburn MR, Jones DL, Stockdale EA, Cliff JB, Herrmann AM, Murphy DV (2009) In situ mapping of nutrient uptake in the rhizosphere using nanoscale secondary ion mass spectrometry. Plant Physiol 151:1751–1757

    Google Scholar 

  • Curtis TP, Sloan WT (2004) Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr Opin Microbiol 7:221–226

    Google Scholar 

  • Dahllof I (2002) Molecular community analysis of microbial diversity. Curr Opin Biotechnol 13:213–217

    Google Scholar 

  • DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53(3):371–383

    Google Scholar 

  • Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA 106:16428–16433. doi:10.1073/pnas.0905240106

    Google Scholar 

  • Desbrosses GG, Kopka J, Udvardi MK (2005) Lotus japonicas metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant-microbe interactions. Plant Physiol 137:1302–1318

    Google Scholar 

  • Dopson M, Baker-Austin C, Bond PL (2004) First use of two-dimensional polyacrylamide gel electrophoresis to determine phylogenetic relationships. J Microbiol Methods 58:297–302

    Google Scholar 

  • Dworzanski JP, Snyder AP (2005) Classification and identification of bacteria using mass spectrometry-based proteomics. Expert Rev Proteomics 2(6):863–878

    Google Scholar 

  • Emmerling C, Schloter M, Hartmann A, Kandeler E (2002) Functional diversity of soil organisms: a review of recent research activities in Germany. J Plant Nutr Soil Sci 165:408–420

    Google Scholar 

  • Fiehn O, Weckwerth W (2003) Deciphering metabolic networks. Eur J Biochem 270:579–588

    Google Scholar 

  • Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Micobiol 71:4117–4120

    Google Scholar 

  • Flies CB, Peplies J, Schuler D (2005) Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments. Appl Environ Microbiol 71:2723–2731

    Google Scholar 

  • Foster JA, Bunge J, Gilbert JA, Moore JH (2012) Measuring the microbiome: perspectives on advances in DNA-based techniques for exploring microbial life. Brief Bioinform 13(4):420–429. doi:10.1093/bib/bbr080

    Google Scholar 

  • Fredslund L, Ekelund F, Jacobsen CS, Johnsen K (2001) Development and application of a most-probable-number-pcr assay to quantify flagellate populations in soil samples. Appl Environ Microbiol 67:1613–1618

    Google Scholar 

  • Gamalero E, Lingua G, Berta G, Lemanceau P (2003) Methods of studying root colonization by introduced beneficial bacteria. Agronomic 23:407–418

    Google Scholar 

  • Gich FB, Amer E, Figueras JB, Abella CA, Balaguer MD, Poch M (2000) Assessment of microbial community structure changes by amplified ribosomal DNA restriction analysis (ARDRA). Int Microbiol 3:103–106

    Google Scholar 

  • Gonzalez A, Knight R (2012) Advancing analytical algorithms and pipelines for billions of microbial sequences. Curr Opin Biotechnol 23:64–71

    Google Scholar 

  • Gosal SK, Saroa GS, Vikal Y, Cameotra SS, Pathania N, Bhanot A (2012) Isolation and molecular characterisation of diazotrophic growth-promoting bacteria from wheat rhizospheric soils of Punjab. Soil Res 49:725–732, http://dx.doi.org/10.1071/SR11136

    Google Scholar 

  • Gros R, Monrozier JL, Faivre P (2006) Does disturbance and restoration of alpine grassland soils affect the genetic structure and diversity of bacterial and N2-fixing populations? Environ Microbiol 8:1889–1901. doi:10.1111/j.1462-2920.2006.01106.x

    Google Scholar 

  • Guazzaroni ME, Beloqui A, Golyshin PN, Ferrer M (2009) Metagenomics as a new technological tool to gain scientific knowledge. World J Microbiol Biotechnol 25:945–954. doi:10.1007/s11274-009-9971-z

    Google Scholar 

  • Guerquin-Kern JL, Wu TD, Qunitana C, Croisy A (2005) Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy). Biochim Biophys Acta 1724:228–238

    Google Scholar 

  • He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC, Huang Z, Wu W, Gu B, Jardine P, Criddle C, Zhou J (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1:67–77. doi:10.1038/ismej.2007.2

    Google Scholar 

  • Hernandez G, Valdes-Lepez O, Ramrez M, Goffard N, Weiller G, Aparicio-Fabre R, Fuentes SI, Erban A, Kopka J, Udvardi MK, Vance CP (2009) Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus stressed common bean plants. Plant Physiol 151:1221–1238

    Google Scholar 

  • Herrmann AM, Clode PL, Fletcher IR, Nunan N, Stockdale EA, O’Donnell AG, Murphy DV (2007a) A novel method for the study of the biophysical interface in soils using nano-scale secondary ion mass spectrometry. Rapid Commun Mass Spectrom 21:29–34

    Google Scholar 

  • Herrmann AM, Ritz K, Nunan N, Clode PL, Pett-Ridge J, Kilburn MR, Murphy DV, O’Donnell AG, Stockdale EA (2007b) Nano-scale secondary ion mass spectroscopy-a new analytical tool in biogeochemistry and soil ecology: a review article. Soil Biol Biochem 39:1835–1850

    Google Scholar 

  • Huang WE, Stoecker K, Griffiths R, Newbold L, Daims H, Whiteley AS, Wagner M (2007) Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol 9:1878–1889. doi:10.1111/j.1462-2920.2007.01352.x

    Google Scholar 

  • Huang LN, Tang FZ, Song YS, Wan CY, Wang SL, Liu WQ, Shu WS (2011) Biodiversity, abundance, and activity of nitrogen-fixing bacteria during primary succession on a copper mine tailings. FEMS Microbiol Ecol 78:439–450

    Google Scholar 

  • Ivanov YD, Govorun VM, Bykov VA, Archakov AI (2006) Nanotechnologies in proteomics. Proteomics 6(5):1399–1414

    Google Scholar 

  • Iwata K, Yu SS, Azlan NNA, Omori T (2012) Ammonia accumulation of novel nitrogen-fixing bacteria. In: Sammour R (ed) Biotechnology – molecular studies and novel applications for improved quality of human life. InTech, pp. 13–24. http://www.intechopen.com/books/biotechnology-molecular-studies-and-novel-applications-for-improvedquality-of-human-life/ammonia-accumulation-of-novel-nitrogen-fixing-bacteria

  • Izquierdo JA, Nusslein K (2006) Distribution of extensive nifH gene diversity across physical soil microenvironments. Microb Ecol 51:441–452

    Google Scholar 

  • Jeong ML, Jiang H, Chen HS, Tsai CJ, Harding SA (2004) Metabolic profiling of the sink-to-source transition in developing leaves of quaking aspen. Plant Physiol 136:3364–3375

    Google Scholar 

  • Jones DL, Shannon D, Junvee-Fortune T, Farrar JF (2005) Plant capture of free amino acids is maximized under high soil amino acid concentrations. Soil Biol Biochem 37:179–181

    Google Scholar 

  • Kalia A, Gupta RP (2002) Nodule induction in non-legumes by Rhizobia. Indian J Microbiol 42:183–193

    Google Scholar 

  • Kalia A, Gupta RP (2005a) Conservation and utilization of microbial diversity. NBA Scientific Bulletin Number 1, National Biodiversity Authority, Chennai, pp 1–40

    Google Scholar 

  • Kalia A, Gupta RP (2005b) Proteomics: a paradigm shift. Crit Rev Biotechnol 25:173–198

    Google Scholar 

  • Kennedy IR, Islam N (2001) The current and potential contribution of asymbiotic nitrogen fixation to nitrogen requirements on farms: a review. Aust J Exp Agric 41:447–457

    Google Scholar 

  • Kilburn MR, Jones DL, Clode PL, Cliff JB, Stockdale EA, Herrmann AM, Murphy DV (2010) Application of nanoscale secondary ion mass spectrometry to plant cell research. Plant Signal Behav 5(6):760–762

    Google Scholar 

  • Kirk LK, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 54:169–188

    Google Scholar 

  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO (2012) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:1–11. doi:10.1093/nar/gks808

    Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, vonMering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6(7):1378–1390

    Google Scholar 

  • Ladd JN, Forster RC, Nannipieri P, Oades JM (1996) Soil structure and biological activity. Soil Biochem 9:23–78

    Google Scholar 

  • Larsen A, Castberg T, Sandaa RA, Brussaard CPD, Egge J, Heldal M, Paulino A, Thyrhaug R, van Hannen EJ, Bratbak G (2001) Population dynamics and diversity of phytoplankton, bacteria and viruses in a seawater enclosure. Mar Ecol Prog Ser 221:47–57

    Google Scholar 

  • Lechene C, Luyten Y, McMahon G, Distel D (2007) Quantitative imaging of nitrogen fixation by individual bacteria in animal cells. Science 317:1563–1566

    Google Scholar 

  • Li M, Xu J, Romero-Gonzalez M, Banwart SA, Huang WE (2012) Single cell Raman spectroscopy for cell sorting and imaging. Curr Opin Biotechnol 23:56–63

    Google Scholar 

  • Limmer C, Drake HL (1998) Effect of carbon, nitrogen, and electron acceptor availability on anaerobic N2 Fixation in beech forest soil. Soil Biol Biochem 30:153–158

    Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney IJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphism of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    Google Scholar 

  • Lynch JM, Benedetti A, Insam H, Nuti MP, Smalla K, Torsvik V, Nannipieri P (2004) Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biol Fertil Soils 40:363–385

    Google Scholar 

  • Madsen EL (2011) Microorganisms and their roles in fundamental biogeochemical cycles. Curr Opin Biotechnol 22:456–464

    Google Scholar 

  • Manefield M, McDougald D, Rice S, Kjelleberg S (2006) Bacterial communication: when does a metabolite become a signal. Microbiol Aust 27:115–117

    Google Scholar 

  • Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb Ecol 40:43–56

    Google Scholar 

  • Miller KM, Ming TJ, Schulze AD, Withler RE (1999) Denaturing Gradient Gel Electrophoresis (DGGE): a rapid and sensitive technique to screen nucleotide sequence variation in populations. Biotechniques 27:1016–1030

    Google Scholar 

  • Moran MA (2009) Metatranscrpitomics: eavesdropping on complex microbial communities. Microbe 4(7):329–335

    Google Scholar 

  • Musat N, Foster R, Vagner T, Adam B, Kuyper MMM (2012) Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev 36:486–511

    Google Scholar 

  • Muyzer G, Waal ECD, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    Google Scholar 

  • Nunan N, Wu KJ, Young IM, Crawford JW, Ritz K (2003) Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiol Ecol 44:203–215

    Google Scholar 

  • O’Donnell AG, Young IM, Rushton SP, Shirley MD, Crawford JW (2007) Visualization, modelling and prediction in soil microbiology. Nat Rev Microbiol 5:689–699

    Google Scholar 

  • Orr CH, James A, Leifert C, Cooper JM, Cummimgs SP (2011) Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils. Appl Environ Microbiol 77(3):911–919. doi:10.1128/AEM.01250-10

    Google Scholar 

  • Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98

    Google Scholar 

  • Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, McInerney P, Thompson JF, Bowers J, Jarosz M, Milos PM (2009) Direct RNA sequencing. Nature 461:814–818

    Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Google Scholar 

  • Persing DH, Tenover FC, Tang YW, Versalovic J, Unger ER, Relman DA, White TJ (2004) Molecular microbiology diagnostic principles and practice. ASM Press, NW, Washington, DC, p 632

    Google Scholar 

  • Pinto AJ, Raskin L (2012) PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS One 7(8):e43093. doi:10.1371/journal.pone.0043093

    Google Scholar 

  • Ploug H, Musat N, Adam B, Moraru CL, Lavik G, Vagner T, Bergman B, Kuypers MMM (2010) Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon sp. in the Baltic Sea. ISME J 4(9):1215–1223. doi:10.1038/ismej.2010.53

    Google Scholar 

  • Raes J, Bork P (2008) Molecular eco-systems biology: towards an understanding of community function. Nat RevsMicrobiol 6(9):693–699. doi:10.1038/nrmicro1935

    Google Scholar 

  • Ranjard L, Poly F, Lata JC, Mougel C, Thioulouse J, Nazaret S (2001) Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67(10):4479–4487

    Google Scholar 

  • Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology: agricultural and environmental applications. Springer, New York, pp 29–57. doi:10.1007/978-1-4419-7931-5_2

    Google Scholar 

  • Rennert T, Totsche KU, Heister K, Kersten M, Thieme J (2012) Advanced spectroscopic, microscopic, and tomographic characterization techniques to study biogeochemical interfaces in soil. J Soils Sediments 12:3–23

    Google Scholar 

  • Riaz K, Elmerich C, Moreira D, Raffoux A, Dessaux Y, Faure D (2008) A metagenomic analysis of soil bacteria extends the diversity of quorum-quenching lactonases. Environ Microbiol 10(3):560–570

    Google Scholar 

  • Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6(9):981–989

    Google Scholar 

  • Riffkin PA, Quigley PE, Kearney GA, Cameron FJ, Gault RR, Peoples MB, Thies JE (1999) Factors associated with biological nitrogen fixation in dairy pastures in south-western victoria. Aust J Agric Res 50:261–272

    Google Scholar 

  • Robinson D (2001) d15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16(3):153–162

    Google Scholar 

  • Roesch LFW, Fulthorpe RR, Jaccques RJS, Bento FM, Camargo FAO (2010) Biogeography of diazotrophic bacteria in soils. World J Microbiol Biotechnol 26:1503–1508

    Google Scholar 

  • Rogers SW, Moorman TB, Ong SK (2007) Fluorescent in situ hybridization and micro-autoradiography applied to ecophysiology in soil. Soil Sci Soc Am J 71(2):620–631

    Google Scholar 

  • Roling WFM, Ferrer M, Golyshin PN (2010) Systems approaches to microbial communities and their functioning. Curr Opin Biotechnol 21:532–538

    Google Scholar 

  • Santos PCD, Fang Z, Mason SW, Setubal JC, Dixon R (2012) Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13:162, http://www.biomedcentral.com/1471-2164/13/162

    Google Scholar 

  • Sardans J, Penuelas J, Rivas-Ubach A (2011) Ecological metabolomics: overview of current developments and future challenges. Chemoecology 21:191–225

    Google Scholar 

  • Schulze W (2004) Environmental proteomics-what proteins from soil and surface water can tell us: a perspective. Biogeosci Discuss 1:195–218, http://www.biogeosciences.net/bgd/1/195/

    Google Scholar 

  • Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75

    Google Scholar 

  • Schwartz T, Jungfer C, Heibler S, Friedrich F, Faubel W, Obst U (2009) Combined use of molecular biology taxonomy, Raman spectrometry, and ESEM imaging to study natural biofilms grown on filter materials at waterworks. Chemosphere 77:249–257

    Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif - mutant strains. Mol Plant Microbe Interact 14:359–366

    Google Scholar 

  • Siering PL (1998) The double helix meets the crystal lattice: the power and pitfalls of nucleic acid approaches for biomineralogical investigations. Am Mineral 83:1593–1607

    Google Scholar 

  • Sims GK (2007) Stable isotope probing to investigate microbial function in soil. Recent Res Dev Soil Sci 2:1–23

    Google Scholar 

  • Soni R, Goel R (2011) nifH homologs from soil metagenome. Ekologija 57(3):87–95

    Google Scholar 

  • Tan Z, Hurek T, Vinuesa P, Muller P, Ladha JK, Reinhold-Hurek B (2001) Specific detection of Bradyrhizobium and Rhizobium strains colonizing rice (Oryza sativa) roots by 16S-23S ribosomal DNA intergenic spacer-targeted PCR. Appl Environ Microbiol 67(8):3655–3664

    Google Scholar 

  • Tang J (2011) Microbial metabolomics. Curr Genomics 12:391–403

    Google Scholar 

  • Tiunov AV (2007) Stable isotopes of carbon and nitrogen in soil ecological studies. Biol Bull 34:395–407

    Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    Google Scholar 

  • Torsvik V, Daae FL, Sandaa RA, Ovreas L (1998) Review article: novel techniques for analyzing microbial diversity in natural and perturbed environments. J Biotechnol 64:53–62

    Google Scholar 

  • Turnbaugh PJ, Gordon JI (2008) An invitation to the marriage of metagenomics and metabolomics. Cell 134:708–713

    Google Scholar 

  • Vercruysse M, Fauvart M, Beullens S, Braeken K, Cloots L, Engelen K, Marchal K, Michiels J (2012) A comparative transcriptome analysis of Rhizobium etli bacteroids: specific gene-expression during symbiotic non-growth. Mol Plant Microbe Interact 24:1553–1561. doi:10.1094/MPMI-05-11-0140

    Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep-water rice. J Biotechnol 91:127–141

    Google Scholar 

  • Vervaet H, Boeckx P, Unamuno V, Van Cleemput O, Hofman G (2002) Can d15N profiles in forest soils predict NO3− loss and net N mineralization rates. Biol Fertil Soils 36:143–150

    Google Scholar 

  • Vollu RE, Blank AF, Seldin L, Coelho MRR (2012) Molecular diversity of nitrogen-fixing bacteria associated with Chrysopogon zizanioides (L.) Roberty (vetiver), an essential oil producer plant. Plant Soil 356:101–111

    Google Scholar 

  • Wagner M (2009) Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu Rev Microbiol 63:411–429

    Google Scholar 

  • Wang HB, Zhang ZX, Li H, He HB, Fang CX, Zhang AJ, Li QS, Chen RS, Guo XK, Lin HF, Wu LK, Lin S, Chen T, Lin RY, Peng XX, Liu WX (2011) Characterization of metaproteomics in crop rhizospheric soil. J Proteome Res 10:932–940

    Google Scholar 

  • Wang Y, Hayatsu M, Fuji T (2012) Extraction of bacterial RNA from soil: challenges and solutions. Microbes Environ 27(2):111–121

    Google Scholar 

  • Weber OB, Baldani VLD, Teixeira KRS, Kirchhof G, Baldani JI, Dobereiner J (1999) Isolation and characterization of diazotrophic bacteria from banana and pineapple plants. Plant Soil 210:103–113

    Google Scholar 

  • Wilmes P, Bond P (2009) Microbial community proteomics: elucidating the catalysts and metabolic mechanisms that drive the Earth’s biogeochemical cycles. Curr Opin Microbiol 12(3):310–317

    Google Scholar 

  • Wilson KH, Wilson WJ, Radosevich JL, DeSantis TZ, Viswanathan VS (2002) High density microarray of small subunit ribosomal DNA probes. Appl Environ Microbiol 68:2535–2541

    Google Scholar 

  • Wu LK, Wang HB, Zhang ZX, Lin R, Zhang ZY, Lin WX (2011) Comparative metaproteomic analysis on consecutively Rehmannia glutinosa – monocultured rhizosphere soil. PLoS One 6:e20611

    Google Scholar 

  • Xie C, Li Y (2003) Confocal micro-Raman spectroscopy of single biological cells using using optical trapping and shifted excitation difference techniques. J Appl Phys 93:2982–2986

    Google Scholar 

  • Yeager CM, Northup DE, Grow CC, Barns SM, Kuske CR (2005) Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire. Appl Environ Microbiol 71(5):2713–2722

    Google Scholar 

  • Zhang L, Hurek T, Reinhold-Hurek B (2007) A nifH-based oligonucleotide microarray for functional diagnostics of nitrogen-fixing microorganisms. Microb Ecol 53:456–470

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anu Kalia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kalia, A., Parshad, V.R. (2014). Advanced Molecular and Microspectroscopy Toolbox for Deciphering Soil Diazotroph Diversity. In: Parmar, N., Singh, A. (eds) Geomicrobiology and Biogeochemistry. Soil Biology, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41837-2_3

Download citation

Publish with us

Policies and ethics