Skip to main content

Abstract

Fatigue is defined as a process of cycle by cycle accumulation of damage in a material undergoing fluctuating stresses and strains (Almar-Naess, 1985). A significant feature of fatigue is that the load is not large enough to cause immediate failure. Instead, failure occurs after a certain number of load fluctuations have been experienced, i.e. after the accumulated damage has reached a critical level, see Fig. 6.1 for an illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aicher, W., Branger, J., van Dijk, G. M., Ertelt, J., Hück, M., de Jonge, J. B., Lowak, H., Rhomberg, H., Schütz, D. & Schütz, W. (1976). “Description of a fighter aircraft loading standard for fatigue evaluation FALSTAFF”, Common report of FCW Emmen, LBF, NLR, IABG.

    Google Scholar 

  • Almar-Naess, A. (1985). Fatigue Handbook. Trondheim: Tapir.

    Google Scholar 

  • Amzallag, C., Gerey, J. P., Robert, J. L. & Bahuaud, J. (1994). “Standardization of the rainflow counting method for fatigue analysis”, International Journal of Fatigue, 16(4): 287–293.

    Article  Google Scholar 

  • ASTM Standard (1995). “ASTM standard practices for cycle counting in fatigue analysis”, American Society for Testing and Materials, Philadelphia, PA, USA. E1049-85 (Reapproved 1990).

    Google Scholar 

  • Bendat, J. S. & Piersol, A. G. (1971). Random Data Analysis and Measurement Procedures. New York: Wiley.

    MATH  Google Scholar 

  • Berger, C., Eulitz, K. G, Heuler, P., Kotte, K. L., Naundorf, H., Schuetz, W., Sonsino, C. M., Wimmer, A. & Zenner, H. (2002). “Betriebsfestigkeit in Germany—an overview”, International Journal of Fatigue, 24: 603–625.

    Article  Google Scholar 

  • Buxbaum, O. (1992). Betriebsfestigkeit, sichere und wirtschaftliche Bemessung schwingbruchgefährdeter Bauteile (Durability, safe and economic design of fatigue-loaded components) (2 Auflage). Düsseldorf: Verlag Stahleisen mbH.

    Google Scholar 

  • Castillo, E. (1988). Extreme Value Theory in Engineering. San Diego: Academic Press.

    MATH  Google Scholar 

  • Conle, F. A. (1979). “An examination of variable amplitude histories in fatigue”, Ph. D. thesis. University of Waterloo, Canada.

    Google Scholar 

  • CSR of IACS (2006). “IACS common structural rules for tankers and bulk carriers”, the IACS Council for implementation on Apr. 1, 2006.

    Google Scholar 

  • Cui, W. C. (2003). “A feasible study of fatigue life prediction for marine structures based on crack propagation analysis”, Journal of Engineering for the Maritime Environment, 217(5): 11–23.

    Google Scholar 

  • Downing, S. D. & Socie, D. F. (1982). “Simple rainflow counting algorithms”, International Journal of Fatigue, 4(1): 31–40.

    Article  Google Scholar 

  • Durability (2002). “Rainflow cycle counting software”, 2002 Release, Durability, Inc., 1995–2002.

    Google Scholar 

  • ESDU 95006 (1995). “Fatigue life estimation under variable amplitude loading using cumulative damage calculations”, Engineering Sciences Data Unit. ESDU-95006. London, UK.

    Google Scholar 

  • Etube, L. S. (2001). Fatigue and Fracture Mechanics of Offshore Structures. London and Bury St. Edmunds, UK: Professional Engineering Publishing Ltd.

    Google Scholar 

  • Haibach, E., Fischer, R., Schütz, W. & Hück, M. (1976). “A standard random load sequence of Gaussian type recommended for general application in fatigue testing; its mathematical background and digital generation”, in: Bathgate, R. G. (ed.) Fatigue Testing and Design. London: The Society of Environmental Engineers, 29.1–29.21.

    Google Scholar 

  • Heuler, P. & Klätschke, H. (2005). “Generation and use of standardised load spectra and load-time histories”, International Journal of Fatigue, 27: 974–990.

    Article  MATH  Google Scholar 

  • Heuler, P., Bruder, T. & Klätschke, H. (2005). “Standardised load-time histories—a contribution to durability issues under spectrum loading”, Materialwissenschaft und Werkstofftechnik, 36(11): 669–677.

    Article  Google Scholar 

  • Heuler, P. & Schütz, W. (1998). “Standardized load-time histories—status and trends”, in: Proc. of the 4th Int. Conf. on Low-Cycle Fatigue and Elasto-plastic Behaviour of Materials, Sept. 7–11, 1998, Garmisch-Partenkirchen, 729–734.

    Google Scholar 

  • Heuler, P. & Seeger, T. (1986). “Criterion for omission of variable amplitude loading histories”, International Journal of Fatigue, 8(4): 225–230.

    Article  Google Scholar 

  • Holtz, R. L. (2003). “Phenomenology of the effective stress intensity related to fatigue crack growth thresholds”, International Journal of Fatigue, 25: 891–897.

    Article  Google Scholar 

  • Hu, J. J. (2007). “The full scale measurement of a surface ship under high sea states”, Technical Report No. 07150, China Ship Scientific Research Center, (in Chinese).

    Google Scholar 

  • Johannesson, P. (2006). “Extrapolation of load histories and spectra”, Fatigue and Fracture of Engineering Materials and Structures, 29: 201–207.

    Article  Google Scholar 

  • Klätschke, H. & Schütz, D. (1995). “Das Simultanverfahren zur Extrapolation und Raffung von mehraxialen Belastungs-Zeitfunktionen für Schwingfestigkeitsversuche (Procedure for extrapolation and squeezing of multiaxial load-time histories)”, Materialwiss Werkstofftechnik, 26(8): 404–415.

    Article  Google Scholar 

  • Klemenc, J. & Fajdiga, M. (2000). “Description of statistical dependencies of parameters of random load states (dependency of random load parameters)”, International Journal of Fatigue, 22: 357–367.

    Article  Google Scholar 

  • Li, S. S., Huang, Z. B. & Cui, W. C. (2011). “On implementing a practical algorithm to generate fatigue loading history or spectrum from short time measurement”, Journal of Ship Mechanics, 15(3): 286–300.

    Google Scholar 

  • Matsuishi, M. & Endo, T. (1968). Fatigue of Metals Subjected to Varying Stress. Fukuoka, Japan: Japan Society Mechanical Engineering.

    Google Scholar 

  • Maymon, G. (2005). “A ‘unified’ and a (ΔK +·K max)1/2 crack growth models for aluminum 2024-T351”, Internal Journal of Fatigue, 27: 629–638.

    Article  Google Scholar 

  • Nieslony A. (2009). “Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components”, Mechanical Systems and Signal Processing, 23(8): 2712–2721.

    Article  Google Scholar 

  • Noroozi, A. H., Glinka, G. & Lambert, S. (2005). “A two parameter driving force for fatigue crack growth analysis”, International Journal of Fatigue, 27: 1277–1296.

    Article  MATH  Google Scholar 

  • Papoulis, A. (1965). Probability—Random Variables and Stochastic Processes. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Paris, P. C., Gomez, M. P. & Anderson, W. P. (1961). “A rational analytical theory of fatigue”, The Trend in Engineering, 13: 9–14.

    Google Scholar 

  • Rychlik, I. (1987). “A new definition of the rainflow cycle counting method”, International Journal of Fatigue, 9: 119–121.

    Article  Google Scholar 

  • Sadananda, K. & Vasudevan, A. K. (1997). “Short crack growth and internal stresses”, International Journal of Fatigue, 19(93): S99–108.

    Article  Google Scholar 

  • Sadananda, K. & Vasudevan, A. K. (2003). “Fatigue crack growth mechanisms in steels”, International Journal of Fatigue, 25: 899–914.

    Article  Google Scholar 

  • Sadananda, K. & Vasudevan, A. K. (2004). “Crack tip driving forces and crack growth representation under fatigue”, International Journal of Fatigue, 26: 39–47.

    Article  Google Scholar 

  • Sadananda, K. & Vasudevan, A. K. (2005). “Fatigue crack growth behavior of titanium alloys”, International Journal of Fatigue, 27: 1255–1266.

    Article  Google Scholar 

  • Sadananda, K., Sarkar, S., Kujawski, D. & Vasudevan, A. K. (2009). “A two-parameter analysis of S-N fatigue life using Δσ and σmax”, International Journal of Fatigue, 31: 1648–1659.

    Article  Google Scholar 

  • Schijve, J. (2009). Fatigue of Structures and Materials (2nd ed. with CD-Rom). Dordrecht, the Netherlands: Springer Science+Business Media, B.V.

    Book  Google Scholar 

  • Schütz, D., Lowak, H., de Jonge, J. B. & Schijve, J. (1973). “A standardised load sequence for flight simulation tests on transport aircraft wing structures”, LBF-Report FB-106, NLR-Report TR 73.

    Google Scholar 

  • Schütz, D., Klätschke, H. & Heuler, P. (1994). “Standardized multiaxial load sequences for car wheel suspension components—car loading standard—CARLOS multi”, Fraunhofer-Institut für Betriebsfestigkeit LBF, Darmstadt. Report No. FB-201.

    Google Scholar 

  • Schütz, D., Klätschke, H., Steinhilber, H., Heuler, P. & Schütz, W. (1999). “Standardized load sequences for car wheel suspension components, car loading standard—CARLOS”, Fraunhofer-Institut für Betriebsfestigkeit (LBF), Darmstadt, Industrieanlagen-Betriebsgesellschaft mbH (IABG), Ottobrunn, LBF-Report No. FB-191.

    Google Scholar 

  • Sonsino, C. M., Klätschke, H., Schütz, W. & Hück, M. (1988). “Standardized load sequence for offshore structures-wave action standard history-WASH 1”, Fraunhofer-Institut für Betriebsfestigkeit (LBF), Industrieanlagen-Betriebsgesellschaft mbH (IABG). LBF-Report No. FB-181, 1988, IABG-Report No. TF-2347.

    Google Scholar 

  • Stoychev, S. & Kujawski, D. (2005). “Analysis of crack propagation using ΔK and K max”, International Journal of Fatigue, 27: 1425–1431.

    Article  Google Scholar 

  • Tenhave, A. A. (1991). “WISPER and WISPERX-final definition of two standardised fatigue loading sequences for wind turbine blades”, NLR Report CR 91476 L, Amsterdam.

    Google Scholar 

  • Vasudevan, A. K. & Sadananda, K. (1999). “Application of unified fatigue damage approach to compression-tension region”, International Journal of Fatigue, 21(s1): S263–273.

    Article  Google Scholar 

  • Vasudevan, A. K. & Sadananda, K. (2001). “Analysis of fatigue crack growth under compression-compression loading”, International Journal of Fatigue, 23: S365–374.

    Article  Google Scholar 

  • Vasudevan, A. K. & Sadananda, K. (2009). “Classification of environmentally assisted fatigue crack growth behavior”, International Journal of Fatigue, 31: 1696–1708.

    Article  Google Scholar 

  • Vasudevan, A. K., Sadananda, K. & Glinka, G. (2001). “Critical parameters for fatigue damage”, International Journal of Fatigue, 23: S39–53.

    Article  Google Scholar 

  • Vasudevan, A. K., Sadananda, K. & Louat, N. (1994). “A review of crack closure, fatigue crack threshold and related phenomena”, Materials Science and Engineering, A188: 1–22.

    Article  Google Scholar 

  • Wöhler, A. (1860). “Versuche über die Festigkeit der Eisenbahnwagen-Achsen”, Zeitschrift fur Bauwesen,10(4): 160–161.

    Google Scholar 

  • Wöhler, A. (1870). “Über die Festigkeitsversuche mit Eisen und Stahl”, Zeitschrift für Bauwesen, 20: 73–106.

    Google Scholar 

  • Zhang, J. Z., He, X. D. & Du, S. Y. (2005). “Analyses of the fatigue crack propagation process and stress ratio effects using the two parameter method”, International Journal of Fatigue, 27: 1314–1318.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cui, W., Huang, X., Wang, F. (2014). Description of Fatigue Loading. In: Towards a Unified Fatigue Life Prediction Method for Marine Structures. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41831-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41831-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41830-3

  • Online ISBN: 978-3-642-41831-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics