Skip to main content

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 1410 Accesses

Abstract

The unified approach can mean different things to different people. Crupi (2008) has introduced a unifying approach to assess the structural strength in which different failure modes have been unified. The basic concept is that the energy stored and required to produce the structural failure is a material property independent of the loading conditions. Several relationships were used to correlate different mechanical properties and were validated by experimental results. The developed theoretical model was focused on damping, a material property able to correlate vibration parameters with high cycle fatigue parameters and related to the damage of materials and structures. The measure of damping is based on experimental techniques currently used for damage detection, so this unifying approach could be applied also to structural health monitoring. Good predictions were achieved by applying the new approach to structural details of ships. Lo, et al. (1996) presented a unified model as a natural extension as well as a generalization of Irwin’s concept for mixed mode SIFs ( K , K IIθ). These unifications are not the main considerations of this book so they are not discussed further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ballio, G. & Castiglioni, C. A. (1995). “A unified approach for the design of steel structures under low and/or high cycle fatigue”, Journal of Constructional Steel Research, 34: 75–101.

    Article  Google Scholar 

  • Bian, R., Cui, W. C. & Wan, Z. Q. (2009). “Fatigue crack propagation of the notched specimen under cyclic compression-compression loading based on the two-parameter unified approach”, Journal of Ship Mechanics, 13(5): 734–738 (in Chinese).

    Google Scholar 

  • Bian, R., Cui, W. C., Wan, Z. Q. & Huang, X. P. (2010a). “A method for the evaluation of the two thresholds based on the two-parameter unified approach”, Journal of Ship Mechanics, 14(1–2): 94–100 (in Chinese).

    Google Scholar 

  • Bian, R., Cui, W. C., Wan, Z. Q. & Huang, X. P. (2010b). “Effects of initial cracks and loading sequence on fatigue crack growth of the deepwater structures based on two-parameter unified approach”, Journal of Ship Mechanics, 14(5): 516–525 (in Chinese).

    Google Scholar 

  • Bukkapatnama, S. T. S. & Sadananda, K. (2005). “A genetic algorithm for unified approach-based predictive modeling of fatigue crack growth”, International Journal of Fatigue, 27: 1354–1359.

    Article  Google Scholar 

  • Carpinteri, A. (ed.) (1994). Handbook of Fatigue Crack Propagation in Metallic Structures (Vols. 1 and 2). Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Carpinteri, A. & Paggi, M. (2009). “A unified interpretation of the power laws in fatigue and the analytical correlations between cyclic properties of engineering materials”, International Journal of Fatigue, 31: 1524–1531.

    Article  MATH  Google Scholar 

  • Carpinteri, A. & Paggi, M. (2010). “A unified fractal approach for the interpretation of the anomalous scaling laws in fatigue and comparison with existing models”, International Journal of Fracture, 161: 41–52.

    Article  MATH  Google Scholar 

  • Christensen, R. M. (2008). “A physically based cumulative damage formalism”, International Journal of Fatigue, 30: 595–602.

    Article  MATH  Google Scholar 

  • Ciavarella, M., Paggi, M. & Carpinteri, A. (2008). “One, no one, and one hundred thousand crack propagation laws: a generalized Barenblatt and Botvina dimensional analysis approach to fatigue crack growth”, Journal of the Mechanics and Physics of Solids, 56: 3416–3432.

    MATH  Google Scholar 

  • Coffin, L. F. & Tavernelli, J. F. (1959). The cyclic straining and fatigue of metals, Trans of the Metallurgical Society of American Institute of Mechanical Engineers, 215: 794.

    Google Scholar 

  • Crupi, V. (2008). “A unifying approach to assess the structural strength”, International Journal of Fatigue, 30: 1150–1159.

    Article  Google Scholar 

  • Cui, W. C. (2002). “A state-of-the-art review on fatigue life prediction methods for metal structures”, Journal of Marine Science and Technology, 7(1): 43–56.

    Article  Google Scholar 

  • Cui, W. C. & Huang X. P. (2003). “A general constitutive relation for fatigue crack growth analysis of metal structures”, Acta Metallurgica Sinica (English Letters), 16(5): 342–354.

    Google Scholar 

  • Cui, W. C., Bian, R. G. & Liu, X. C. (2007). “Application of the two-parameter unified approach for fatigue life rediction of marine structures”, in: Basu, R. I., Belenky, V., Wang, G. & Yu, Q. (eds.) Proceedings of the 10th International Symposium on Practical Design of Ships and Other Floating Structures, ABS, 2: 1064–1070.

    Google Scholar 

  • Cui, W. C., Wang, F. & Huang, X. P. (2011). “A unified fatigue life prediction method for marine structures”, Marine Structures, 24(2): 153–181.

    Article  Google Scholar 

  • Donahue, R. J., Clark, H. M., Atanmo, P., Kumble, R. & McEvily, A. J. (1972). “Crack opening displacement and the rate of fatigue crack growth”, International Journal of Fracture Mechanics, 8: 209–219.

    Article  Google Scholar 

  • Donald, K. & Paris, P. C. (1999). An evaluation of ΔK eff estimation procedure on 6061-T6 and 2024-T3 aluminum alloys, International Journal of Fatigue, 21: S47–57.

    Article  Google Scholar 

  • Dugdale, D. S. (1960). “Yielding of steel sheets contain slits”, Journal of the Mechanics and Physics of Solids, 8: 100–108.

    Article  Google Scholar 

  • Edwards, P. & Newman, Jr. J. C. (eds.). (1990). “Short-crack growth behaviour in various aircraft materials”, AGARD-R-767. Paris: Neuilly-sur-Seine.

    Google Scholar 

  • Elber, W. (1970). “Fatigue crack closure under cyclic tension”, Engineering Fracture Mechanics, 2: 37–45.

    Article  Google Scholar 

  • Fleck, N. A., Shin, C. S. & Smith, R. A. (1985). “Fatigue crack growth under compressive loading”, Engineering Fracture Mechanics, 21(1): 173–185.

    Article  Google Scholar 

  • Forman, R. G., Kearney, V. E. & Engle, R. M. (1967). “Numerical analysis of crack propagation in cyclic-loaded structures”, Journal of Basic Engineering, 89: 459–464.

    Article  Google Scholar 

  • Hertzberg, R. W., Newton, C. H. & Jaccard, R. (1988). “Crack closure: correlation and confusion”, in: Mechanics of Fatigue Crack Closure, ASTM STP 982. Philadelphia, PA: American Society for Testing and Materials, 139–148.

    Chapter  Google Scholar 

  • Irwin, G. R. (1960). “Fracture mode transition for a crack traversing a plate”, Journal of Basic Engineering, 82: 417–425.

    Article  Google Scholar 

  • Ishihara, S. & McEvily, A. J. (1999). “A coaxing effect in the small fatigue crack growth regime”, Scripta Materialia, 40(5): 617–622.

    Article  Google Scholar 

  • Ishihara, S. & McEvily, A. J. (2002). “Analysis of short fatigue crack growth in cast aluminum alloys”, International Journal of Fatigue, 24: 1169–1174.

    Article  Google Scholar 

  • Kanninen, M. F. & Popelar, C. H. (1985). Advanced Fracture Mechanics. New York: Oxford University Press.

    MATH  Google Scholar 

  • Kitagawa, H. & Takahashi, S. (1976). “Applicability of fracture mechanics to very small cracks or cracks in the early stage”, in: Proceedings of the Second International Conference on Mechanical Behaviour of Materials, Boston, MA, ASM, 627–631.

    Google Scholar 

  • Kujawski, D. & Ellyin, F. (1995). “Unified approach to mean stress effect on fatigue threshold conditions”, International Journal of Fatigue, 17: 101–106.

    Article  Google Scholar 

  • Kujawski, D. (2001a). “Enhanced model of partial crack closure for correlation of R-ratio effects in aluminum alloys”, International Journal of Fatigue, 23: 95–102.

    Article  Google Scholar 

  • Kujawski, D. (2001b). “Correlation of long- and physically short-cracks growth in aluminum alloys”, Engineering Fracture Mechanics, 68: 1357–1369.

    Article  Google Scholar 

  • Kujawski, D. (2001c). “A new (ΔK + K max)0.5 driving force parameter for crack growth in aluminum alloys”, International Journal of Fatigue, 23: 733–740.

    Article  Google Scholar 

  • Kujawski, D. (2001d). “A fatigue crack driving force parameter with load ratio effects”, International Journal of Fatigue, 23: S239–246.

    Article  Google Scholar 

  • Lo, K. W., Tamilselvan, T., Chua, K. H. & Zhao, M. M. (1996). “A unified model for fracture mechanics”, Engineering Fracture Mechanics, 54(2): 189–210.

    Article  Google Scholar 

  • Manson, S. S. & Hirschberg, M. H. (1964). Fatigue: an Interdisciplinary Approach. Syracuse, New York: Syracuse University Press, 133.

    Google Scholar 

  • McEvily, A. J. & Groeger, J. (1977). “On the threshold for fatigue-crack growth”, 4th International Conference on Fracture. Waterloo, Canada: University of Waterloo Press, 2: 1293–1298.

    Google Scholar 

  • McEvily, A. J. & Ishihara, S. (2001). “On the dependence of the rate of fatigue crack growth on the σ n a (2a) parameter”, International Journal of Fatigue, 23: 115–120.

    Article  Google Scholar 

  • McEvily, A. J., Bao, H. & Ishihara, S. (1999). “A modified constitutive relation for fatigue crack growth”, Fatigue’99, 329–336.

    Google Scholar 

  • Muralidharan, U. & Manson, S. S. (1988). “A modified universal slopes equation for estimation of fatigue characteristics of metals”, Journal of Engineering Materials and Technology—Transactions of the ASME, 110: 55–58.

    Article  Google Scholar 

  • Newman, Jr. J. C. & Edwards, P. (1988). “Short-crack growth behaviour in an aluminium alloy—an AGARD cooperative test programme”, AGARD R-732. Paris: Neuilly-sur-Seine.

    Google Scholar 

  • Newman, Jr. J. C., Phillips, E. P. & Swain, M. H. (1999). “Fatigue life prediction methodology using small-crack theory”, International Journal of Fatigue, 21: 109–119.

    Article  Google Scholar 

  • Paris, P. C. & Erdogan, F. (1963). “A critical analysis of crack propagation laws”, Journal of Basic Engineering, 85: 528–534.

    Article  Google Scholar 

  • Paris, P. C., Gomez, M. P. & Anderson, W. P. (1961). “A rational analytical theory of fatigue”, The trend in Engineering, 13: 9–14.

    Google Scholar 

  • Park, J. H. & Song, J. H. (1995). “Detailed evaluation of methods for estimation of fatigue properties”, International Journal of Fatigue, 17(5): 365–373.

    Article  MathSciNet  Google Scholar 

  • Pearson, S. (1984). “Fatigue crack propagation in metals”, Engineering Fracture Mechanics, 7: 251.

    Google Scholar 

  • Plekhov, O., Paggi, M., Naimark, O. & Carpinteri, A. (2011). “A dimensional analysis interpretation to grain size and loading frequency dependencies of the Paris and Wöhler curves”, International Journal of Fatigue, 33: 477–483.

    Article  Google Scholar 

  • Pugno, N., Ciavarella, M., Cornetti P. & Carpinteri A. (2006a). “A unified law for fatigue crack growth”, Journal of the Mechanics and Physics of Solids, 54: 1333–1349.

    Article  MATH  Google Scholar 

  • Pugno, N., Ciavarella, M., Cornetti, P. & Carpinteri, A. (2006b). “A generalized Paris’ law for fatigue crack growth”, Journal of the Mechanics and Physics of Solids, 54: 1333–1349.

    Article  MATH  Google Scholar 

  • Pugno, N., Cornetti, P. & Carpinteri, A. (2007). “New unified laws in fatigue: from the Wöhler’s to the Paris’ regime”, Engineering Fracture Mechanics, 74: 595–601.

    Article  Google Scholar 

  • Ramsamooj, D. V. (2003). “Analytical prediction of short to long fatigue crack growth rate using small- and large-scale yielding fracture mechanics”, International Journal of Fatigue, 25: 923–933.

    Article  Google Scholar 

  • Ramsamooj, D. V. & Shugar, T. A. (2001). “Model prediction of fatigue crack propagation in metal alloys in laboratory air”, International Journal of Fatigue, 23: S287–300.

    Article  Google Scholar 

  • Roessle, M. L., & Fatemi, A. (2000). “Strain-controlled fatigue properties of steels and some simple approximations”, International Journal of Fatigue, 22: 495–511.

    Article  Google Scholar 

  • Sadananda, K. & Vasudevan, A. K. (1997). “Short crack growth and internal stresses”, International Journal of Fatigue, 19(93): S99–108.

    Article  Google Scholar 

  • Sadananda, K., Vasudevan, A. K. & Holtz, R. L. (2001). “Extension of the unified approach to fatigue crack growth to environmental interactions”, International Journal of Fatigue, 23: S277–286.

    Article  Google Scholar 

  • Sadananda, K. & Vasudevan, A. K. (2003). “Fatigue crack growth mechanisms in steels”, International Journal of Fatigue, 25: 899–914.

    Article  Google Scholar 

  • Sadananda, K. & Vasudevan, A. K. (2004). “Crack tip driving forces and crack growth representation under fatigue”, International Journal of Fatigue, 26: 39–47.

    Article  Google Scholar 

  • Sadananda, K. & Vasudevan, A. K. (2005). “Fatigue crack growth behavior of titanium alloys”, International Journal of Fatigue, 27: 1255–1266.

    Article  Google Scholar 

  • Vasudevan, A. K. & Sadananda, K. (1999). “Application of unified fatigue damage approach to compression-tension region”, International Journal of Fatigue, 21(s1): S263–273.

    Article  Google Scholar 

  • Vasudevan, A. K. & Sadananda, K. (2001). “Analysis of fatigue crack growth under compression-compression loading”, International Journal of Fatigue, 23: S365–374.

    Article  Google Scholar 

  • Vasudevan, A. K., Sadananda, K. & Glinka, G. (2001). “Critical parameters for fatigue damage”, International Journal of Fatigue, 23: S39–53.

    Article  Google Scholar 

  • Vasudevan, A. K., Sadananda, K. & Louat, N. (1994). “A review of crack closure, fatigue crack threshold and related phenomena”, Materials Science and Engineering, A188: 1–22.

    Article  Google Scholar 

  • Wang, F. & Cui, W. C. (2009). “Approximate method to determine the model parameters in a new crack growth rate model”, Marine Structures, 22(4): 744–757.

    Article  Google Scholar 

  • Wang, Y., Cui, W., Wu, X., Wang, F. & Huang, X. (2008). “The extended McEvily model for fatigue crack growth analysis of Metal Structures”, International Journal of Fatigue, 30: 1851–1860.

    Article  Google Scholar 

  • Zhang, J., He, X. D., Sha, Y. & Du, S.Y. (2010). “The compressive stress effect on fatigue crack growth under tension-compression loading”, International Journal of Fatigue, 32: 361–367.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cui, W., Huang, X., Wang, F. (2014). Current State-of-the-Art of UFLP. In: Towards a Unified Fatigue Life Prediction Method for Marine Structures. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41831-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41831-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41830-3

  • Online ISBN: 978-3-642-41831-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics