Misalignment Identification in Induction Motors Using Orbital Pattern Analysis

  • José Juan Carbajal-Hernández
  • Luis Pastor Sánchez-Fernández
  • Victor Manuel Landassuri-Moreno
  • José de Jesús Medel-Juárez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)


Induction motors are the most common engine used worldwide. When they are summited to extensive working journals, e.g. in industry, faults may appear, generating a performance reduction on them. Several works have been focused on detecting early mechanical and electrical faults before damage appears in the motor. However, the main drawback of them is the complexity on the motor’s signal mathematical processing. In this paper, a new methodology is proposed for detecting misalignment faults in induction motors. Through signal vibration and orbital analysis, misalignment faults are studied, generating characteristically patterns that are used for fault identification. Artificial Neural Networks are evolved with an evolutionary algorithm for misalignment pattern recognition, using two databases (training and recovering respectively). The results obtained, indicate a good performance of Artificial Neural Networks with low confusion rates, using experimental patterns obtained from real situations where motors present a certain level of misalignment.


Orbital analysis patterns recognition neural networks evolution motor fault misalignment 


  1. 1.
    Chow, M.: Methodologies of using neural network and fuzzy logic technologies for motor incipient fault detection. World Scientific, Singapore (1997)CrossRefGoogle Scholar
  2. 2.
    Wang, J., Gao, R., Yan, R.: Broken-rotor-bar diagnosis for induction motors. Journal of Physics 305, 1–10 (2011)Google Scholar
  3. 3.
    Filippetti, F., Franceschini, G., Tassoni, C.: Neural networks aided on-line diagnostics of induction motor rotor faults. IEEE Transactions on Industry Applications 31(4), 892–899 (1995)CrossRefGoogle Scholar
  4. 4.
    Lee, Y., Lee, C.: Modelling and analysis of misaligned rotor–ball bearing systems. Journal of Sound and Vibration 224, 17–32 (1999)CrossRefGoogle Scholar
  5. 5.
    Matić, D., Kulić, F.: SVM broken bar detection based on analysis of phase current. In: 5th International Power Electronics and Motion Control Conference and Exposition, vol. (6397456), pp. LS4c.21–LS4c.24 (2012)Google Scholar
  6. 6.
    Climente, V., Antonino, J., Riera, M., Puche, R., Escobar, L.: Application of the Wigner–Ville distribution for the detection of rotor asymmetries and eccentricity through high-order harmonics. Electric Power Systems Research 91, 28–36 (2012)CrossRefGoogle Scholar
  7. 7.
    Kechida, R., Menacer, A., Talhaoui, H.: Approach signal for rotor fault detection in induction motors. Journal of Failure Analysis and Prevention 13(3), 346–352 (2013)CrossRefGoogle Scholar
  8. 8.
    Füssel, D., Ballé, P.: Combining neuro-fuzzy and machine learning for fault diagnosis of a D.C. motor. In: Proceedings of the American Control Conference, pp. 37–41 (1997)Google Scholar
  9. 9.
    Gaylard, A., Meyer, A., Landy, C.: Acoustic evaluation of faults in electrical machines. In: Electrical Machines and Drives, Conference Publication; 412, pp. 147–150 (1995)Google Scholar
  10. 10.
    Liu, D., Zhao, Y., Yang, B., Sun, J.: A new motor fault detection method using multiple window S-method time-frequency analysis. In: International Conference on Systems and Informatics, pp. 2563–2566 (2012)Google Scholar
  11. 11.
    Kim, K., Parlos, A.: Induction motor fault diagnosis based on neuropredictors and wavelet signal processing. IEEE/ASME Transactions on Mechatronics 7(2), 201–219 (2002)CrossRefGoogle Scholar
  12. 12.
    Ha, K., Hong, J., Kim, G., Chang, K., Lee, J.: Orbital analysis of rotor due to electromagnetic force for switched reluctance motor. IEEE Transactions on Magnetics 36(4), 1407–1411 (2000)CrossRefGoogle Scholar
  13. 13.
    Dongfeng, S., Lianfsheng, O., Ming, B.: Instantaneous purified orbit: A new tool for analysis of nonstationary vibration of rotor system. International Journal of Rotating Machinery 7(2), 105–115 (2001)CrossRefGoogle Scholar
  14. 14.
    Han, S.: Retrieving the time history of displacement from measured acceleration signal. Journal of Mechanical Science and Technology 17(2), 197–206 (2003)Google Scholar
  15. 15.
    ISO 10816. Mechanical vibration: evaluation of machine vibration by measurements on non-rotating parts (1995)Google Scholar
  16. 16.
    VDI 2056. Standards of evaluation for mechanical vibrations of machines, Germany (1964)Google Scholar
  17. 17.
    Proakis, J., Manolakis, D.: Tratamiento digital de señales. Pearson Education, vol. 1(4a). Ed. España (2007)Google Scholar
  18. 18.
    Yao, X., Liu, Y.: A new evolutionary system for evolving artificial neural networks. IEEE Transactions on Neural Networks 8(3), 694–713 (1997)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447 (1999)CrossRefGoogle Scholar
  20. 20.
    Bullinaria, J.: Evolving neural networks: Is it really worth the effort? In: Proceedings of the European Symposium on Artificial Neural Networks, pp. 267–272. d-side, Evere (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • José Juan Carbajal-Hernández
    • 1
  • Luis Pastor Sánchez-Fernández
    • 1
  • Victor Manuel Landassuri-Moreno
    • 2
  • José de Jesús Medel-Juárez
    • 1
  1. 1.Center of Computer ResearchNational Polytechnic InstituteMéxico D.F.México
  2. 2.Mexico Valley University Center (CUUAEM-VM) – Autonomous University of the State of MexicoEstado de MéxicoMéxico

Personalised recommendations