MoCap Data Segmentation and Classification Using Kernel Based Multi-channel Analysis

  • Sergio García-Vega
  • Andrés Marino Álvarez-Meza
  • César Germán Castellanos-Domínguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)


A methodology for automatic segmentation and classification of multi-channel data related to motion capture (MoCap) videos of cyclic activities are presented. Regarding this, a kernel approach is employed to obtain a time representation, which captures the cyclic behavior of a given multi-channel data. Moreover, we calculate a mapping based on kernel principal component analysis, in order to obtain a low-dimensional space that encodes the main cyclic behaviors. From such, low-dimensional space the main segments of the studied activity are inferred. Then, a distance based classifier is used to classified each MoCap video segment. A well-known MoCap database is tested which contains different activities performed by humans. Attained results shows how our approach is a simple alternative to obtain a suitable classification performance in comparison to complex methods for MoCap analysis.


Multi-channel data kernel methods MoCap human activity recognition 


  1. 1.
    Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A., Shotton, J.: Real-time human pose recognition in parts from single depth images. In: CVPR, pp. 1297–1304 (2011)Google Scholar
  2. 2.
    Gan, Y.W.C., Wang, X.: Human motion segmentation by rpca with augmented lagrange multiplier. In: ICALIP, pp. 379–383 (2012)Google Scholar
  3. 3.
    Murugappan, M., Basah, S.N.B., Yaacob, S.B., Ismail, K.N.S.B.K.: Human postures modeling using motion analysis: A review. In: International Conference on Biomedical Engineering (ICoBE), pp. 280–285 (2012)Google Scholar
  4. 4.
    Lv, F., Nevatia, R.: Recognition and segmentation of 3-D human action using HMM and multi-class adaBoost. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 359–372. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Lan, Z.-Z., De la Torre, F., Hoai, M.: Joint segmentation and classification of human actions in video. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3265–3272 (2011)Google Scholar
  6. 6.
    Scholkopf, B., Smola, A.J.: Learning with Kernels. The MIT Press, Cambridge (2002)Google Scholar
  7. 7.
    Liu, W., Príncipe, J.C., Haykin, S.: Kernel Adaptive Filtering: A Comprehensive Introduction. John Wiley & Sons, Inc. (2010)Google Scholar
  8. 8.
    Genton, M.G., Cristianini, N., Shawe-taylor, J., Williamson, R.: Classes of kernels for machine learning: a statistics perspective. Journal of Machine Learning Research 2, 299–312 (2001)Google Scholar
  9. 9.
    Sheather, S.J.: Density estimation. Statistical Sci. 19, 588–597 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sergio García-Vega
    • 1
  • Andrés Marino Álvarez-Meza
    • 1
  • César Germán Castellanos-Domínguez
    • 1
  1. 1.Signal Processing and Recognition GroupUniversidad Nacional de Colombia, Sede ManizalesColombia

Personalised recommendations