Advertisement

Motion Estimation from RGB-D Images Using Graph Homomorphism

  • David da Silva Pires
  • Roberto M. Cesar-Jr
  • Luiz Velho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)

Abstract

We present an approach for motion estimation from videos captured by depth-sensing cameras. Our method uses the technique of graph matching to find groups of pixels that move to the same direction in subsequent frames. In order to choose the best matching for each patch, we minimize a cost function that accounts for distances on RGB and XYZ spaces. Our application runs at real-time rates for low resolution images and has shown to be a convenient framework to deal with input data generated by the new depth-sensing devices. The results show clearly the advantage obtained in the use of RGB-D images over RGB images.

Keywords

motion estimation graph matching RGB-D images 

References

  1. 1.
    Leyvand, T., Meekhof, C., Wei, Y.C., Sun, J., Guo, B.: Kinect Identity: Technology and experience. Computer 44, 94–96 (2011)CrossRefGoogle Scholar
  2. 2.
    Gallo, L., Placitelli, A., Ciampi, M.: Controller-free exploration of medical image data: Experiencing the Kinect. In: CBMS, pp. 1–6 (June 2011)Google Scholar
  3. 3.
    Tron, R., Vidal, R.: A benchmark for the comparison of 3-D motion segmentation algorithms. In: IEEE CVPR, pp. 1–8 (2007)Google Scholar
  4. 4.
    Kumar, M.P., Torr, P.H.S., Zisserman, A.: Learning layered motion segmentations of video. In: ICCV (2005)Google Scholar
  5. 5.
    Suma, E.A., Lange, B., Rizzo, A.S., Krum, D.M., Bolas, M.: FAAST: The Flexible Action and Articulated Skeleton Toolkit. IEEE Virtual Reality, 245–246 (March 2011)Google Scholar
  6. 6.
    Noma, A., Graciano, A.B.V., Cesar Jr., R.M., Consularo, L.A., Bloch, I.: Interactive image segmentation by matching attributed relational graphs. Pattern Recognition 45(3), 1159–1179 (2012)CrossRefGoogle Scholar
  7. 7.
    Noma, A., Velho, L., Cesar Jr, R.M.: A computer-assisted colorization approach based on efficient belief propagation and graph matching. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 345–352. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 89(2-3), 114–141 (2003)CrossRefzbMATHGoogle Scholar
  9. 9.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Intl. Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)CrossRefGoogle Scholar
  10. 10.
    Cesar Jr, R.M., Bengoetxea, E., Bloch, I., Larranaga, P.: Inexact graph matching for model-based recognition: Evaluation and comparison of optimization algorithms. Pattern Recognition 38(11), 2099–2113 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • David da Silva Pires
    • 1
  • Roberto M. Cesar-Jr
    • 1
  • Luiz Velho
    • 2
  1. 1.University of São PauloSão PauloBrazil
  2. 2.National Institute for Pure and Applied MathematicsRio de JaneiroBrazil

Personalised recommendations