Advertisement

Multi-sensor Fusion Using Dempster’s Theory of Evidence for Video Segmentation

  • Björn Scheuermann
  • Sotirios Gkoutelitsas
  • Bodo Rosenhahn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)

Abstract

Segmentation of image sequences is a challenging task in computer vision. Time-of-Flight cameras provide additional information, namely depth, that can be integrated as an additional feature in a segmentation approach. Typically, the depth information is less sensitive to environment changes. Combined with appearance, this yields a more robust segmentation method. Motivated by the fact that a simple combination of two information sources might not be the best solution, we propose a novel scheme based on Dempster’s theory of evidence. In contrast to existing methods, the use of Dempster’s theory of evidence allows to model inaccuracy and uncertainty. The inaccuracy of the information is influenced by an adaptive weight, that provides a measurement of how reliable a certain information might be. We compare our method with others on a publicly available set of image sequences. We show that the use of our proposed fusion scheme improves the segmentation.

Keywords

Gaussian Mixture Model Segmentation Result Depth Information Basic Probability Assignment Video Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cordes, K., Scheuermann, B., Rosenhahn, B., Ostermann, J.: Learning object appearance from occlusions using structure and motion recovery. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 611–623. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. TPAMI 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  3. 3.
    Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.: Interactive image segmentation using an adaptive GMMRF model. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 428–441. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Rother, C., Kolmogorov, V., Blake, A.: Grab cut: Interactive foreground extraction using iterated graph cuts. In: SIGGRAPH, vol. 23, pp. 309–314 (2004)Google Scholar
  5. 5.
    Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Bi-layer segmentation of binocular stereo video. In: CVPR, vol. 2, pp. 407–414. IEEE (2005)Google Scholar
  6. 6.
    Criminisi, A., Cross, G., Blake, A., Kolmogorov, V.: Bilayer segmentation of live video. In: CVPR, vol. 1, pp. 53–60. IEEE (2006)Google Scholar
  7. 7.
    Harville, M., Gordon, G., Woodfill, J.: Foreground segmentation using adaptive mixture models in color and depth. In: EVENT, pp. 3–11 (2001)Google Scholar
  8. 8.
    Scheuermann, B., Rosenhahn, B.: Feature quarrels: The dempster-shafer evidence theory for image segmentation using a variational framework. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 426–439. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Wang, L., Zhang, C., Yang, R., Zhang, C.: Tofcut: Towards robust real-time foreground extraction using a time-of-flight camera. In: 3DPVT (2010)Google Scholar
  10. 10.
    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient nd image segmentation. IJCV 70(2), 109–131 (2006)CrossRefGoogle Scholar
  11. 11.
    Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? TPAMI 26(2), 147–159 (2004)CrossRefGoogle Scholar
  12. 12.
    Dempster, A.P.: A generalization of Bayesian inference. Journal of the Royal Statistical Society. Series B (Methodological) 30(2), 205–247 (1968)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Shafer, G.: A mathematical theory of evidence. Princeton university press (1976)Google Scholar
  14. 14.
    Adamek, T., O’Connor, N.E.: Using Dempster-Shafer theory to fuse multiple information sources in region-based segmentation. In: ICIP, pp. 269–272 (2007)Google Scholar
  15. 15.
    Chaabane, S.B., Sayadi, M., Fnaiech, F., Brassart, E.: Dempster-Shafer evidence theory for image segmentation: application in cells images. IJSP (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Björn Scheuermann
    • 1
  • Sotirios Gkoutelitsas
    • 1
  • Bodo Rosenhahn
    • 1
  1. 1.Institut für Informationsverarbeitung (TNT)Leibniz Universität HannoverGermany

Personalised recommendations