Drug Activity Characterization Using One-Class Support Vector Machines with Counterexamples

  • Alicia Hurtado-Cortegana
  • Francesc J. Ferri
  • Wladimiro Diaz-Villanueva
  • Carlos Morell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)


The problem of detecting chemical activity in drugs from its molecular description constitutes a challenging and hard learning task. The corresponding prediction problem can be tackled either as a binary classification problem (active versus inactive compounds) or as a one class problem. The first option leads usually to better prediction results when measured over small and fixed databases while the second could potentially lead to a much better characterization of the active class which could be more important in more realistic settings. In this paper, a comparison of these two options is presented when support vector models are used as predictors.


  1. 1.
    Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Knowledge Discovery and Data Mining 2(2), 121–167 (1998)CrossRefGoogle Scholar
  2. 2.
    Ferri, F.J., Diaz-Villanueva, W., Castro, M.: Experiments on automatic drug activity characterization using support vector classification. In: IASTED Intl. Conf. on Computational Intelligence (CI 2006), San Francisco, US, pp. 332–337 (2006)Google Scholar
  3. 3.
    Yepes, V., Pellicer, E., Ferri, F.: Profit forecasting using support vector regression for consulting engineering firms. In: 9th International Conference on Intelligent Systems Design and Applications, ISDA 2009, Pisa, Italy (2009)Google Scholar
  4. 4.
    Tax, D.M.J., Duin, R.P.W.: Support vector data description. Machine Learning 54(1), 45–66 (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Computation 13(7), 1443–1471 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Scholkopf, B., Smola, A.: Learning with Kernels. MIT Press (2002)Google Scholar
  7. 7.
    Wu, M., Ye, J.: A small sphere and large margin approach for novelty detection using training data with outliers. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2088–2092 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cao, L.J., Lee, H.P., Chong, W.K.: Modified support vector novelty detector using training data with outliers. Pattern Recogn. Lett. 24(14), 2479–2487 (2003)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gozalbes, R., Doucet, J., Derouin, F.: Application of topological descriptors in qsar and drug design: History and new trends. Current Drug Targets – Infectious Disorders 2, 93–102 (2002)CrossRefGoogle Scholar
  10. 10.
    Katritzky, A.R., Gordeeva, E.V.: Traditional topological indices vs electronic, geometrical, and combined molecular descriptors in qsar/sqpr research. J. Chem. Inf. Comput. Sci. 33, 835–857 (1993)CrossRefGoogle Scholar
  11. 11.
    Basak, S., Bertelsen, S., Grunwald, G.: Application of graph theoretical parameters in quantifying molecular similarity and structure-activty studies. J. Chem. Inf. Comput. Sci. 34, 270–276 (1994)CrossRefGoogle Scholar
  12. 12.
    Seybold, P., May, M., Bagal, U.: Molecular structure-propertiy relationships. J. Chem. Educ. 64, 575–581 (1987)CrossRefGoogle Scholar
  13. 13.
    Kier, L.B., Hall, L.H.: Molecular Connectivity in Structure-Activity Analysis. John Willey and Sons, New York (1986)Google Scholar
  14. 14.
    Balaban, A.T.: Highly discriminating distance-based topological index. Chem. Phys. Lett. 89, 399–404 (1982)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gálvez, J., García-Domenech, R., de Julián-Ortiz, J., Soler, R.: Topological approach to drug design. J. Chem. Inf. Comput. Sci. 35, 272–284 (1995)CrossRefGoogle Scholar
  16. 16.
    Galvez, J., Garcia, R., Salabert, M., Soler, R.: Charge indexes. new topological descriptor. J. Chem. Inf. and Comp. Sciences 34, 502–525 (1994)Google Scholar
  17. 17.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    García, S., Herrera, F.: An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. Journal of Machine Learning Research 9, 2677–2694 (2008)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alicia Hurtado-Cortegana
    • 1
  • Francesc J. Ferri
    • 1
  • Wladimiro Diaz-Villanueva
    • 1
  • Carlos Morell
    • 2
  1. 1.Departament d’InformàticaUniversitat de ValènciaSpain
  2. 2.Comp. Sci. Dept.Univ. Central ”Marta Abreu” de Las VillasSanta ClaraCuba

Personalised recommendations