Advertisement

Gait-Based Gender Classification Using Persistent Homology

  • Javier Lamar Leon
  • Andrea Cerri
  • Edel Garcia Reyes
  • Rocio Gonzalez Diaz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)

Abstract

In this paper, a topological approach for gait-based gender recognition is presented. First, a stack of human silhouettes, extracted by background subtraction and thresholding, were glued through their gravity centers, forming a 3D digital image I. Second, different filters (i.e. particular orders of the simplices) are applied on ∂ K(I) (a simplicial complex obtained from I) which capture relations among the parts of the human body when walking. Finally, a topological signature is extracted from the persistence diagram according to each filter. The measure cosine is used to give a similarity value between topological signatures. The novelty of the paper is a notion of robustness of the provided method (which is also valid for gait recognition). Three experiments are performed using all human-camera view angles provided in CASIA-B database. The first one evaluates the named topological signature obtaining 98.3% (lateral view) of correct classification rates, for gender identification. The second one shows results for different human-camera distances according to training and test (i.e. training with a human-camera distance and test with a different one). The third one shows that upper body is more discriminative than lower body.

Keywords

gait-based recognition topology persistent homology gender classification 

References

  1. 1.
    Golomb, B.A., Lawrence, D.T., Sejnowksi, T.J.: SEXNET: A neural network identifies sex from human faces. In: Lippmann, R.P., Moody, J.E., Touretzky, D.S. (eds.) Advances in Neural Information Processing Systems, vol. 3, pp. 572–579. Morgan Kaufmann Publishers, Inc. (1991)Google Scholar
  2. 2.
    Harb, H., Chen, L.: Gender identification using a general audio classifier. In: Proceedings of the 2003 International Conference on Multimedia and Expo, ICME 2003, vol. 1, pp. 733–736. IEEE (2003)Google Scholar
  3. 3.
    Yu, S., Tan, T., Huang, K., Jia, K., Wu, X.: A study on gait-based gender classification. IEEE Trans. Image Processing 18(8), 1905–1910 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hu, M., Wang, Y., Zhang, Z., Zhang, D.: Gait-based gender classification using mixed conditional random field. IEEE Transactions on Systems, Man, and Cybernetics, Part B 41(5), 1429–1439 (2011)CrossRefGoogle Scholar
  5. 5.
    Nixon, M.S., Carter, J.N.: Automatic recognition by gait. Proc. of IEEE 94(11), 2013–2024 (2006)CrossRefGoogle Scholar
  6. 6.
    Kale, A., Sundaresan, A., Rajagopalan, A.N., Cuntoor, N.P., Chowdhury, A.K.R., Kruger, V., Chellappa, R.: Identification of humans using gait. IEEE Trans. Image Processing 13(9), 1163–1173 (2004)CrossRefGoogle Scholar
  7. 7.
    Goffredo, M., Carter, J., Nixon, M.: Front-view gait recognition. In: Biometrics: Theory, Applications and Systems, September 29-October 1, pp. 1–6 (2008)Google Scholar
  8. 8.
    Aggarwal, J.K., Cai, Q.: Human motion analysis: A review. Computer Vision and Image Understanding 73(3), 428–440 (1999)CrossRefGoogle Scholar
  9. 9.
    Mather, G., Murdoch, L.: Gender discrimination in biological motion displays based on dynamic cues. Proceedings of Biological Sciences 258(1353) (1994)Google Scholar
  10. 10.
    Lamar-León, J., García-Reyes, E.B., Gonzalez-Diaz, R.: Human gait identification using persistent homology. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 244–251. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Lamar, J., Garcia, E., Gonzalez-Diaz, R., Alonso, R.: An application for gait recognition using persistent homology. Electronic Journal Image-A 3(5) (2013)Google Scholar
  12. 12.
    Edelsbrunner, H., Harer, J.: Computational Topology - an Introduction. American Mathematical Society (2010)Google Scholar
  13. 13.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete & Computational Geometry 37(1), 103–120 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hu, M., Wang, Y., Zhang, Z., Wang, Y.: Combining spatial and temporal information for gait based gender classification. In: 20th International Conference on Pattern Recognition (ICPR), pp. 3679–3682. IEEE (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Javier Lamar Leon
    • 1
  • Andrea Cerri
    • 2
  • Edel Garcia Reyes
    • 1
  • Rocio Gonzalez Diaz
    • 3
  1. 1.Patterns Recognition DepartmentAdvanced Technologies Application CenterLa HabanaCuba
  2. 2.IMATI - CNRGenovaItaly
  3. 3.Applied Math Dept., School of Computer Engineering, Campus Reina MercedesUniversity of SevilleSevilleSpain

Personalised recommendations