Advertisement

Automatic Verification of Parent-Child Pairs from Face Images

  • Tiago F. Vieira
  • Andrea Bottino
  • Ihtesham Ul Islam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)

Abstract

The automatic identification of kinship relations from pairs of facial images is an emerging research area in pattern analysis with possible applications in image retrieval and annotation, forensics and historical studies. This work explores the computer identification of pairs of kins using different facial features, based on geometric and textural data, and state-of-the-art classifiers. We first analyzed different facial attributes individually, selecting the most effective feature variables with a two stage feature selection algorithm. Then, these features were combined together, selecting again the most relevant ones. Experiments shows that the proposed approach provides a valuable solution to the kinship verification problem, as suggested by the comparison with a different method on the same data and on the same experimental protocol.

Keywords

Kinship verification SVM Random Forests mRMR SFS 

References

  1. 1.
    Fang, R., Tang, K.D., Snavely, N., Chen, T.: Towards computational models of kinship verification. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 1577–1580. IEEE (September 2010)Google Scholar
  2. 2.
    Xia, S., Shao, M., Fu, Y.: Kinship verification through transfer learning. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI 2011, vol. 3, pp. 2539–2544. AAAI Press (2011)Google Scholar
  3. 3.
    Somanath, G., Kambhamettu, C.: Can faces verify blood-relations? In: IEEE International Conference on Biometrics: Theory, Applications and Systems, BTAS (2012)Google Scholar
  4. 4.
    Lu, J., Hu, J., Zhou, X., Shang, Y., Tan, Y.P., Wang, G.: Neighborhood repulsed metric learning for kinship verification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2594–2601 (2012)Google Scholar
  5. 5.
    Vieira, T.F., Bottino, A., Laurentini, A., DeSimone, M.: Detecting Siblings in Image Pairs. The Visual Computer (to appear, 2013)Google Scholar
  6. 6.
    Lu, J., Hu, J., Zhou, X., Shang, Y., Tan, Y.P., Wang, G.: Neighborhood repulsed metric learning for kinship verification (2012), Database available at https://sites.google.com/site/elujiwen/download
  7. 7.
    Xia, S., Shao, M., Luo, J., Fu, Y.: Understanding kin relationships in a photo. IEEE Transactions on Multimedia 14(4), 1046–1056 (2012), Database available at http://www.ece.neu.edu/~yunfu/research/Kinface/Kinface.htm CrossRefGoogle Scholar
  8. 8.
    Milborrow, S., Nicolls, F.: Locating facial features with an extended active shape model. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 504–513. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  10. 10.
    van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1582–1596 (2010)CrossRefGoogle Scholar
  11. 11.
    Abdel-Hakim, A.E., Farag, A.A.: CSIFT: A SIFT Descriptor with Color Invariant Characteristics. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006, vol. 2, pp. 1978–1983 (2006)Google Scholar
  12. 12.
    Chen, J., Shan, S., He, C., Zhao, G., Pietikäinen, M., Chen, X., Gao, W.: Wld: A robust local image descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1705–1720 (2010)CrossRefGoogle Scholar
  13. 13.
    Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)zbMATHGoogle Scholar
  14. 14.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011)CrossRefGoogle Scholar
  16. 16.
    Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1226–1238 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tiago F. Vieira
    • 1
  • Andrea Bottino
    • 1
  • Ihtesham Ul Islam
    • 1
  1. 1.Politecnico di TorinoTorinoItaly

Personalised recommendations