Oriented Polar Snakes for Phase Contrast Cell Images Segmentation

  • Mitchel Alioscha-Perez
  • Ronnie Willaert
  • Helene Tournu
  • Patrick Van Dijck
  • Hichem Sahli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)

Abstract

Noninvasive imaging of unstained living cells allows to study living specimens without altering them, and is a widely used technique in biotechnology for determining biological and biochemical roles of proteins. Fluorescence and contrast images are both used complementarily for better outcomes. However, segmentation of contrast images is particularly difficult due to the presence of lighting/shade-off artifacts, defocused scans, or overlapping. In this work, we make use of the optical properties intervening during the image formation process for cell segmentation. We propose the shear oriented polar snakes, an active contour model that implicitly involves phase information. Experimental results confirms the method suitability for cell images segmentation.

Keywords

active contours image phase estimation smart markers image segmentation 

References

  1. 1.
    Koyuncu, C.F., Arslan, S., Durmaz, I., Cetin-Atalay, R., Gunduz-Demir, C.: Smart Markers for Watershed-Based Cell Segmentation. PLOS ONE 7(11), e48664 (2012), doi:10.1371/journal.pone.0048664CrossRefGoogle Scholar
  2. 2.
    Cohen, L.D., Kimel, R.: Global minimum for active contour models: A path approach. Int. Jour. Comp. Vis. 24, 57–78 (1997)CrossRefGoogle Scholar
  3. 3.
    Wienert, S., Heim, D., Saeger, K., Stenzinger, A., Beil, M., Hunfnagl, P., Dietel, M., Denkert, C., Klauschen, F.: Detection and segmentation of cell nuclei in virtual microscopy images: a minimum-model approach. Scientific Reports 2, 503–510 (2012)CrossRefGoogle Scholar
  4. 4.
    Yin, Z., Kanade, T., Chen, M.: Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation. Medical Image Analysis 16, 1047–1062 (2012)CrossRefGoogle Scholar
  5. 5.
    Bellman, R., Dreyfus, S.: Applied Dynamic Programming. Princeton University Press, Princeton (1962)MATHGoogle Scholar
  6. 6.
    Ambühl, M., Brepsant, C., Meister, J., Verkhovsky, A., Sbalzarini, I.: High-resolution cell outline segmentation and tracking from phase-contrast microscopy images. J. Microsc. 245(2), 161–170 (2012)CrossRefGoogle Scholar
  7. 7.
    Seroussi, I., Veikherman, D., Ofer, N., Yehudai-Resheff, S., Keren, K.: Segmentation and tracking of live cells in phase-contrast images using directional gradient vector flow for snakes. J. Microsc. 247(2), 137–146 (2012)CrossRefGoogle Scholar
  8. 8.
    Collewet, C.: Polar snakes: A fast and robust parametric active contour model. In: IEEE Int. Conf. on Image Processing (ICIP), pp. 3013–3016 (2009)Google Scholar
  9. 9.
    Tibshirani, R.: Regression Shrinkage and Selection via the Lasso. J. R. Static. Soc. 58(1), 267–288 (1996)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mitchel Alioscha-Perez
    • 1
  • Ronnie Willaert
    • 2
  • Helene Tournu
    • 3
    • 4
  • Patrick Van Dijck
    • 3
    • 4
  • Hichem Sahli
    • 1
    • 5
  1. 1.Dept. Electronics & Informatics (ETRO)Vrije Universiteit Brussel (VUB)Belgium
  2. 2.Research Group Structural Biology Brussels (SBB)Vrije Universiteit Brussel (VUB)Belgium
  3. 3.Department of Molecular Microbiology, VIBKU LeuvenBelgium
  4. 4.Laboratory of Molecular Cell Biology (MCB)KU LeuvenLeuvenBelgium
  5. 5.Interuniversity Microelectronics Center (IMEC)LeuvenBelgium

Personalised recommendations