Revisiting LBP-Based Texture Models for Human Action Recognition

  • Thanh Phuong Nguyen
  • Antoine Manzanera
  • Ngoc-Son Vu
  • Matthieu Garrigues
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)


A new method for action recognition is proposed by revisiting LBP-based dynamic texture operators. It captures the similarity of motion around keypoints tracked by a realtime semi-dense point tracking method. The use of self-similarity operator allows to highlight the geometric shape of rigid parts of foreground object in a video sequence. Inheriting from the efficient representation of LBP-based methods and the appearance invariance of patch matching method, the method is well designed for capturing action primitives in unconstrained videos. Action recognition experiments, made on several academic action datasets validate the interest of our approach.


action recognition local binary pattern dynamic texture 


  1. 1.
    Aggarwal, J., Ryoo, M.: Human activity analysis: A review. ACM Comput. Surv. 16, 16:1–16:43 (2011)CrossRefGoogle Scholar
  2. 2.
    Kellokumpu, V., Zhao, G., Pietikäinen, M.: Human activity recognition using a dynamic texture based method. In: BMVC (2008)Google Scholar
  3. 3.
    Kellokumpu, V., Zhao, G., Pietikäinen, M.: Texture based description of movements for activity analysis. In: VISAPP (2), pp. 206–213 (2008)Google Scholar
  4. 4.
    Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. PAMI 23, 257–267 (2001)CrossRefGoogle Scholar
  5. 5.
    Mattivi, R., Shao, L.: Human action recognition using LBP-TOP as sparse spatio-temporal feature descriptor. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 740–747. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Yeffet, L., Wolf, L.: Local trinary patterns for human action recognition. In: ICCV, pp. 492–497 (2009)Google Scholar
  7. 7.
    Kliper-Gross, O., Gurovich, Y., Hassner, T., Wolf, L.: Motion interchange patterns for action recognition in unconstrained videos. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 256–269. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Nanni, L., Brahnam, S., Lumini, A.: Local ternary patterns from three orthogonal planes for human action classification. Expert Syst. Appl. 38, 5125–5128 (2011)CrossRefGoogle Scholar
  9. 9.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. PAMI 24, 971–987 (2002)CrossRefGoogle Scholar
  10. 10.
    Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In: CVPR, pp. 3169–3176 (2011)Google Scholar
  11. 11.
    Garrigues, M., Manzanera, A.: Real time semi-dense point tracking. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012, Part I. LNCS, vol. 7324, pp. 245–252. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR (2), pp. 2169–2178 (2006)Google Scholar
  13. 13.
    Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. PAMI 34, 480–492 (2012)CrossRefGoogle Scholar
  14. 14.
    Schuldt, C., Laptev, I., Caputo, B.: Recognizing Human Actions: A Local SVM Approach. In: ICPR, pp. 32–36 (2004)Google Scholar
  15. 15.
    Liu, J., Luo, J., Shah, M.: Recognizing realistic actions from video “in the wild”. In: CVPR, pp. 1996–2003 (2009)Google Scholar
  16. 16.
    Lu, Z., Peng, Y., Ip, H.H.S.: Spectral learning of latent semantics for action recognition. In: ICCV, pp. 1503–1510 (2011)Google Scholar
  17. 17.
    Bregonzio, M., Li, J., Gong, S., Xiang, T.: Discriminative topics modelling for action feature selection and recognition. In: BMVC, pp. 1–11 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thanh Phuong Nguyen
    • 1
  • Antoine Manzanera
    • 1
  • Ngoc-Son Vu
    • 2
  • Matthieu Garrigues
    • 1
  1. 1.ENSTA-ParisTechPalaiseauFrance
  2. 2.LIRIS, INSA LyonVilleurbanneFrance

Personalised recommendations