Advertisement

A Comparison of Different Classifiers Architectures for Electrocardiogram Artefacts Recognition

  • Carlos R. Vázquez-Seisdedos
  • Alexander A. Suárez León
  • Joao Evangelista Neto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)

Abstract

Applying heart rate variability (HRV) analysis on ambulatory ECG monitoring is a very useful decision support tool for cardiovascular diagnosis. The presence of non-valid beats (artefacts) on the RR interval time-series affects the diagnosis accuracy using this technique. Despite the importance of artefacts recognition prior to exclusion, no paper was found characterizing quantitatively the performance of, on the one hand, the extracted features and, on the other hand, the clustering methods on artefacts recognition for HRV analysis. In this paper we evaluate the performance of several combinations of three feature extraction methods and four clustering methods (based on machine learning techniques) for the artefacts beats recognition on the ECG signal. The trade-off between performance indexes suggests the use of a non-linear principal component analysis as feature extraction method and a multilayer perceptron (MLP) as clustering method, with sensitivity, specificity and positive-predictive-value (PPV) equal to respectively 95 %, 95.9 % and 98 %.

Keywords

ECG artefact detection artificial neural networks feature extraction classifier 

References

  1. 1.
    Hosseini, H.G., Luo, D., Reynolds, K.J.: The comparison of different feed forward neural network architectures for ECG signal diagnosis. Medical Engineering & Physics 28, 372–378 (2006)CrossRefGoogle Scholar
  2. 2.
    Mitra, S., Mitra, M., Chaudhuri, B.B.: Pattern defined heuristic rules and directional histogram based online ECG parameter extraction. Measurement 42, 150–156 (2009)CrossRefGoogle Scholar
  3. 3.
    Engin, M.: ECG Beat Classification Using Neuro-fuzzy Network. Pattern Recognition Letters 25, 1715–1722 (2004)CrossRefGoogle Scholar
  4. 4.
    Joy, M.R., Chakraborty, C., Ajoy, K.R.: A two-stage mechanism for registration and classification of ECG using Gaussian mixture model. Pattern Recognition 42, 2979–2988 (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Acir, N.: A support vector machine classifier algorithm based on a perturbation method and its application to ECG beat recognition systems. Expert Systems with Applications 31, 150–158 (2006)CrossRefGoogle Scholar
  6. 6.
    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology: “Heart rate variability. Standards of measurement, physiological interpretation, and clinical use”. European Heart Journal 17, 354–381 (1996)Google Scholar
  7. 7.
    Ceylan, R., Özbay, Y.: Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network. Expert Systems with Applications 33, 286–295 (2007)CrossRefGoogle Scholar
  8. 8.
    Patra, D., Das, M.K., Pradhan, S.: Integration of FCM, PCA and Neural Networks for classification of ECG arrhythmias. IAENG International Journal of Computer Science 36(3) (2009)Google Scholar
  9. 9.
    Özbay, Y., Ceylan, R., Karlik, B.: A Fuzzy Clustering Neural Network Architecture for Classification of ECG Arrhythmias. Computers in Biology and Medicine 36, 376–388 (2006)CrossRefGoogle Scholar
  10. 10.
    Karpagachelvi, S., Arthanari, M., Sivakumar, M.: ECG Feature Extraction Techniques-A Survey Approach. International Journal of Computer Science and Information Security 8(1), 76–80 (2010)Google Scholar
  11. 11.
    Neto, J.E., Suárez-León, A.A., Vázquez Seisdedos, C.R., López-Mora, N.A., Leite, J.C., Oliveira, R.C.L.: Métodos de extracción de características en el ECG: análisis comparativo. In: V Latin American Congress on Biomedical Engineering, CLAIB 2011, Cuba. IFMBE Proceedings, vol. 33, pp. 858–861 (2011) (in Spanish), http://link.springer.com/content/pdf/10.1007%2F978-3-642-21198-0_218
  12. 12.
    Moody, G.B., Mark, R.G.: The MIT-BIH Arrhythmia Database on CD-ROM and software for use with it. Computers in Cardiology 17, 185–188 (1990)Google Scholar
  13. 13.
    Köhler, B.U., Hennig, C., Orglmeister, R.: The Principles of Software QRS Detection. Reviewing and Comparing Algorithms for Detecting this Important ECG Waveform. IEEE Engineering in Medicine and Biology, 42–57 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Carlos R. Vázquez-Seisdedos
    • 1
  • Alexander A. Suárez León
    • 1
  • Joao Evangelista Neto
    • 2
  1. 1.Center for Neurosciences Studies, Image and Signal Processing, Biomedical Engineering DepartamentUniversidad de OrienteSantiago de CubaCuba
  2. 2.Amazon State University and UniNorte/LaurenteManausBrazil

Personalised recommendations