Improving Dysarthria Classification by Pattern Recognition Techniques Based on a Bionic Model

  • Eduardo Gonzalez-Moreira
  • Diana Torres
  • Carlos A. Ferrer
  • Yusely Ruiz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)


The goal of this research is to use a bionic model to enhance classifi- cation of Dysarthria. The model based on the main features of the mammalian olfactory system is the initial stage of the recognition process. The bionic mod- el aimed to achieve an enhancement in the separation ability of the dysarthric features. The recognition performance obtained by four different pattern recog- nition algorithms using the bionic model to improve the features is shown and discussed. The results indicated that bionic model had clear influence on classi- fication performance of well-known techniques using dysarthria database as case study. We regard the results of this study as a promising initial step to the use of bionic model as a recognition improvement function.


pattern recognition bionic model dysarthria 


  1. 1.
    Freeman, W.J.: Mass action in the nervous system. Academic Press, New York (1975)Google Scholar
  2. 2.
    Shepherd, G., Brayton, R.: Computer simulation of a dendrodendritic synaptic circuit for self- and lateral-inhibition in the olfactory bulb. Brain Res. 175, 377–382 (1979)CrossRefGoogle Scholar
  3. 3.
    Freeman, W.J., Skarda, C.: Spatial EEG patterns, non-linear dynamics and perception: the neo-sherringtonian view. Brain Res. Rev. 10, 147–175 (1985)CrossRefGoogle Scholar
  4. 4.
    Aronsson, P., Liljenstrom, H.: Effects of non-synaptic neuronal interaction in cortex on synchronization and learning. Biosystems 63, 43–56 (2001)CrossRefGoogle Scholar
  5. 5.
    Liljenström, H.: Stability and instability in autonomous systems. In: Advances in Cognitive Neurodynamics – Proceedings of the International Conference on Cognitive Neurodynamics, Shanghai, November 17-21, pp. 661–665 (2008)Google Scholar
  6. 6.
    Kozma, R., Freeman, W.J.: The KIV Model of Intentional Dynamics and Decision Making. Neural Networks 22(3), 277–285 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gonzalez-Moreira, E., Li, G., Ruiz, Y.: A tea classification method based on an olfactory system model. In: Advances in Cognitive Neurodynamics, Hangzhou, pp. 747–751 (2008)Google Scholar
  8. 8.
    Gonzalez-Moreira, E., Liljenstrom, H., Ruiz, Y., Li, G.: A biological inspired model for pattern recognition. J. Zhejiang Univ. Sci. B 11, 115–126 (2010)CrossRefGoogle Scholar
  9. 9.
    Gonzalez-Moreira, E., Ruiz, Y.: A bionic model inspired on the olfactory system. In: V Latin American Congress on Biomedical Engineering (CLAIB 2011), Havana (2011)Google Scholar
  10. 10.
    Doty, R.: Handbook of olfaction and gustation. Dekker, New York (2003)CrossRefGoogle Scholar
  11. 11.
    Lowe, G.: Electrical signaling in the olfactory bulb. Curr. Opin. Neurobiol. 13, 476–481 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mori, K., Nagao, H., Yoshihara, Y.: The olfactory bulb: coding and processing of odor molecule information. Science 286, 711–715 (1999)CrossRefGoogle Scholar
  13. 13.
    Leon, M., Johnson, B.: Olfactory coding in the mammalian olfactory bulb. Brain Res. Rev. 42, 23–32 (2003)CrossRefGoogle Scholar
  14. 14.
    Freeman, W.J.: Nonlinear gain mediating cortical stimulus-response relations. Biol. Cybernet. 33, 237–247 (1979)CrossRefGoogle Scholar
  15. 15.
    Liljenstrom, H.: Modeling the dynamics of olfactory cortex using simplified network units and realistic architecture. Int. J. Neural Syst. 2, 1–15 (1991)CrossRefGoogle Scholar
  16. 16.
    Kowianski, P., Lipowska, M., Morys, J.: The piriform cortex and the endopiriform nucleus in the rat reveal generally similar pattern of connections. Folia Morphol. 58, 9–19 (1999)Google Scholar
  17. 17.
    Castillo Guerra, E.: A modern approach to dysarthria classification. Ph.D. Thesis at UNB, Canada (2002)Google Scholar
  18. 18.
    Aronson, A.E.: Dysarthrias: differential diagnosis (1993)Google Scholar
  19. 19.
    Darley, F.L., Aronson, A.E., Brown, J.R.: Differential diagnostic patterns of dysarthria. J. Speech Hear Res. 12, 246–249 (1969)Google Scholar
  20. 20.
    Darley, F.L., Aronson, A.E., Brown, J.R.: Motor speech disorders, 3rd edn. W.B. Saunders Company, Philadelphia (1975)zbMATHGoogle Scholar
  21. 21.
    Castillo Guerra, E., Lovey, D.F.: A modern approach to dysarthria classification. In: 25th Annual lntemational Conference of the IEEE EMBS, Cancun (2003)Google Scholar
  22. 22.
    Torres, D., Acebo, L., Gonzalez-Moreira, E., Ferrer, C.A.: Uso de la señal de voz en la clasificación de disartrias. Presented at the RECPAT 2012 (2012)Google Scholar
  23. 23.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. Sigkdd Explor. 11 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eduardo Gonzalez-Moreira
    • 1
  • Diana Torres
    • 1
  • Carlos A. Ferrer
    • 1
  • Yusely Ruiz
    • 1
  1. 1.Center for Studies on Electronics and Information TechnologiesCentral University of Las VillasCuba

Personalised recommendations