Advertisement

Adaptive H-Extrema for Automatic Immunogold Particle Detection

  • Guillaume Thibault
  • Kristiina Iljin
  • Christopher Arthur
  • Izhak Shafran
  • Joe Gray
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)

Abstract

Quantifying concentrations of target molecules near cellular structures, within cells or tissues, requires identifying the gold particles in immunogold labelled images. In this paper, we address the problem of automatically detect them accurately and reliably across multiple scales and in noisy conditions. For this purpose, we introduce a new contrast filter, based on an adaptive version of the H-extrema algorithm. The filtered images are simplified with a geodesic reconstruction to precisely segment the candidates. Once the images are segmented, we extract classical features and then classify using the majority vote of multiple classifiers. We characterize our algorithm on a pilot data and present results that demonstrate its effectiveness.

Keywords

Adaptive H-extrema Mathematical morphology Immunogold particle detection Pattern recognition 

References

  1. 1.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)zbMATHGoogle Scholar
  2. 2.
    Grimaud, M.: New measure of contrast: the dynamics. In: Paul, D., Gader; Edward, R., Dougherty; Jean, C. (eds.) Proc. SPIE, Image Algebra and Morphological Image Processing III, vol. 1769, pp. 292–305 (1992)Google Scholar
  3. 3.
    Thibault, G., Fertil, B., Navarro, C., Pereira, S., Cau, P., Levy, N., Sequeira, J., Mari, J.-L.: Shape and Texture Indexes: Application to Cell Nuclei Classification. International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI) 27(1) (2013)Google Scholar
  4. 4.
    Jan, W., Slot, H.J.: Geuze: Cryosectioning and immunolabeling. Nature 10, 2480–2491 (2007)Google Scholar
  5. 5.
    Berkson, J.: Application of the Logistic Function to Bio-Assay. Journal of the American Statistical Association 39 (1944)Google Scholar
  6. 6.
    Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 115–133 (1944)Google Scholar
  8. 8.
    Karreman, M.A., van Donselaar, E.G., Gerritsen, H.C., Verrips, C.T., Verkleij, A.J.: VIS2FIX: A high-speed fixation method for immuno-electron microscopy. Traffic 12(7), 806–814 (2011)CrossRefGoogle Scholar
  9. 9.
    Karreman, M.A., Agronskaia, A.V., van Donselaar, E.G., Vocking, K., Fereidouni, F., Humbel, B.M., Verrips, C.T., Verkleij, A.J., Gerritsen, H.C.: Optimizing immuno-labeling for correlative fluorescence and electron microscopy on a single specimen. Journal of Structural Biology (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Guillaume Thibault
    • 1
  • Kristiina Iljin
    • 1
  • Christopher Arthur
    • 1
  • Izhak Shafran
    • 1
  • Joe Gray
    • 1
  1. 1.Oregon Health & Science University (OHSU)PortlandUSA

Personalised recommendations