Advertisement

Biologically Inspired Anomaly Detection in Pap-Smear Images

  • Maykel Orozco-Monteagudo
  • Alberto Taboada-Crispi
  • Hichem Sahli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)

Abstract

Uterine Cervical Cancer is one of the most common forms of cancer in women worldwide. Papanicolau smear test is a well-known screening method of detecting abnormalities in the uterine cervix cells. In this paper we address the problem of anomaly detection in pap smear images. Our method avoids modeling the normal pap smear images which is a very complex task due to the large within class variance of the normal target appearance patterns. The problem is posed as a Visual Attention Mechanism. Indeed the human vision system actively seeks interesting regions in images to reduce the search export in tasks, such as anomaly detection. In this paper, we develop a new method for identifying salient regions in pap smear images and compare this to two previously reported approaches. We then consider how such machine-saliency methods can be used to improve human performance in a realistic anomaly detection task.

Keywords

microscopic images anomaly detection saliency SVM classification 

References

  1. 1.
    Taboada-Crispi, A., Sahli, H., Orozco-Monteagudo, M., Hernandez-Pacheco, D., Falcon-Ruiz, A.: Anomaly Detection in Medical Image Analysis. In: Handbook of Research on Advanced Techniques in Diagnostic Imaging and Biomedical Applications. Medical Info Science Reference, pp. 426–446 (2009)Google Scholar
  2. 2.
    Strzelecki, M., Materka, A., Drozdz, J., Krzeminska-Pakula, M., Kasprzak, J.: Classification and segmentation of intracardiac masses in cardiac tumor echocardiograms. Computerized Medical Imaging and Graphics, 95–107 (2006)Google Scholar
  3. 3.
    Shinkareva, S., Ombao, H., Sutton, B., Mohanty, A., Miller, G.: Classification of functional brain images with a spatio-temporal dissimilarity map. NeuroImage, 63–71 (2006)Google Scholar
  4. 4.
    Goldberg, I., Allan, C., Burel, J.M., Creager, D., Falconi, A., Hochheiser, H., Johnston, J., Mellen, J., Sorger, P., Swedlow, J.: The open microscopy environment (ome) data model and xml file: Open tools for informatics and quantitative analysis in biological imaging. Genome Biol. 5, 47 (2005)CrossRefGoogle Scholar
  5. 5.
    Papanicolaou, G.: A new procedure for staining vaginal smears. Science 95, 438–439 (1942)CrossRefGoogle Scholar
  6. 6.
    Itti, L., Koch, C., Niebur, E., et al.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 1254–1259 (1998)CrossRefGoogle Scholar
  7. 7.
    Geerinck, T.: Visual attention framework: application to event analysis. PhD thesis, Vrije Universiteit Brussel (2009)Google Scholar
  8. 8.
    Baylis, G., Driver, J.: Visual attention and objects: evidence for hierarchical coding of location. Journal of Experimental Psychology: Human Perception and Performance, 451–470 (1993)Google Scholar
  9. 9.
    Vecera, S., Farah, M.: Does visual attention select objects or locations. J. Exper. Psychol. General, 146–160 (1994)Google Scholar
  10. 10.
    Wolfe, J.W.: Guided search 2.0: A revised model of visual search. Psychonomic Bulletin and Review, 202–238 (1994)Google Scholar
  11. 11.
    Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology, 219–227 (1985)Google Scholar
  12. 12.
    Osberger, W., Maeder, A.: Automatic identification of perceptually important regions in an image. In: International Conference on Pattern Recognition, pp. 701–704 (1998)Google Scholar
  13. 13.
    Liu, H., Jiang, S., Huang, Q., Xu, C., Gao, W.: Region-based visual attention analysis with its application in image browsing on small displays. In: MM 2007, pp. 305–308 (2007)Google Scholar
  14. 14.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 603–619 (2002)Google Scholar
  15. 15.
    Li, N., Liu, J.X.: Automatic color image segmentation based on anisotropic diffusion and the application in cancer cell segmentation. In: 1st International Conference on Bioinformatics and Biomedical Engineering (2007)Google Scholar
  16. 16.
    Wenjia, B., Xiaobo, Z., Jinmin, Z., Liang, J., Wong, S.T.C.: Tracking of migrating glioma cells in feature space. In: 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (2007)Google Scholar
  17. 17.
    Bell, A.A., Herberich, G., Meyer-Ebrecht, D., Bocking, A., Aach, T.: Segmentation and detection of nuclei in silver stained cell specimens for early cancer diagnosis. In: IEEE International Conference on Image Processing (2007)Google Scholar
  18. 18.
    Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned salient region detection. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 1597–1604 (2009)Google Scholar
  19. 19.
    Stanley, F., Patten, J.: Diagnostic cytopathology of the uterine cervix, 2nd edn. Monographs in clinical cytology, vol. 3. S. Kargel (1978)Google Scholar
  20. 20.
    Lucchi, A., Smith, K., Achanta, R., Lepetit, V., Fua, P.: A Fully Automated Approach to Segmentation of Irregularly Shaped Cellular Structures in EM Images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 463–471. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Platt, J.C.: Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp. 61–74 (1999)Google Scholar
  22. 22.
    Cristianini, N., Shawe-Taylor, J.: Introduction to Support Vector Machines and other kernel-basedlearning methods. Camridge University Press (2000)Google Scholar
  23. 23.
    Joshi, M.V.: On evaluating performance of classifiers for rare classes. In: Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM 2002, pp. 641–655. IEEE Computer Society, Washington, DC (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maykel Orozco-Monteagudo
    • 1
  • Alberto Taboada-Crispi
    • 1
  • Hichem Sahli
    • 2
    • 3
  1. 1.Universidad Central de Las VillasCuba
  2. 2.Electronics & Informatics Dept. (ETRO)Vrije Universiteit Brussel (VUB)BrusselsBelgium
  3. 3.Interuniverisity Microelectronics Center (IMEC)LeuvenBelgium

Personalised recommendations