Cervical Cell Classification Using Features Related to Morphometry and Texture of Nuclei

  • Juan Valentín Lorenzo-Ginori
  • Wendelin Curbelo-Jardines
  • José Daniel López-Cabrera
  • Sergio B. Huergo-Suárez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)


The Papanicolaou test is used for early prediction of cervical cancer. Computer vision techniques for automating the microscopy analysis of cervical cells in this test have received great attention. Cell segmentation is needed here in order to obtain appropriate features for classification of abnormal cells. However, accurate segmentation of the cell cytoplasm is difficult, due to cell overlapping and variability of color and intensity. This has determined a growing interest in classifying cells using only features from the nuclei, which are easier to segment. In this work, we classified cells in the pap-smear test using a combination of morphometric and Haralick texture features, obtained from the nucleus gray-level co-occurrence matrix. A comparison was made among various classifiers using these features and data dimensionality reduction through PCA. The results obtained showed that this combination can be a promising alternative in order to automate the analysis of cervical cells.


Papanicolaou test features texture dimensionality reduction classifiers 


  1. 1.
    Papanicolaou, G.N.: A new procedure for staining vaginal smears. Science 95, 438–439 (1942)CrossRefGoogle Scholar
  2. 2.
    Jantzen, J., Norup, J., Dounias, G., Bjerregaard, B.: Pap-smear Benchmark Data For Pattern Classification. Presented at the Nature Inspired Smart Information Systems, NiSIS (2005)Google Scholar
  3. 3.
    Marinakis, Y., Dounias, G., Jantzen, J.: Pap smear diagnosis using a hybrid intelligent scheme focusing on genetic algorithm based feature selection and nearest neighbor classification. Comput. Biol. Med. 39, 69–78 (2009)CrossRefGoogle Scholar
  4. 4.
    Mat-Isa, N.A., Mashor, M.Y., Othman, N.H.: An automated cervical pre-cancerous diagnostic system. Artif. Intell. Med. 42, 1–11 (2008)CrossRefGoogle Scholar
  5. 5.
    Huang, P.-C., Chan, Y.-K., Chan, P.-C., Chen, Y.-F., Chen, R.-C., Huang, Y.-R.: Quantitative Assessment of Pap Smear Cells by PC-Based Cytopathologic Image Analysis System and Support Vector Machine. In: Zhang, D. (ed.) ICMB 2008. LNCS, vol. 4901, pp. 192–199. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Kale, A., Aksoy, S.: Segmentation of Cervical Cell Images. Presented at the IEEE 2010 International Conference on Pattern Recognition, August 23 (2010)Google Scholar
  7. 7.
    Sobrevilla, P., Montseny, E., Vaschetto, F., Lerma, E.: Fuzzy-based analysis of microscopic color cervical pap smear images: nuclei detection. Int. J. Comput. Intell. Appl. 9, 187–206 (2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    Plissiti, M.E., Nikou, C., Charchanti, A.: Automated Detection of Cell Nuclei in Pap Smear Images Using Morphological Reconstruction and Clustering. IEEE Trans. Inf. Technol. Biomed. 15, 233–241Google Scholar
  9. 9.
    Plissiti, M.E., Nikou, C.: Cervical Cell Classification Based Exclusively on Nucleus Features. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012, Part II. LNCS, vol. 7325, pp. 483–490. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Patten, S.F.: Diagnostic cytopathology of the uterine cervix. S. Karger AG, Basel (1978)Google Scholar
  11. 11.
    Soille, P.: Morphological Image Analysis: Principles and Applications. Springer (2004)Google Scholar
  12. 12.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)CrossRefGoogle Scholar
  13. 13.
    Demsar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Juan Valentín Lorenzo-Ginori
    • 1
  • Wendelin Curbelo-Jardines
    • 1
  • José Daniel López-Cabrera
    • 1
  • Sergio B. Huergo-Suárez
    • 1
  1. 1.Center for Studies on Electronics and Information TechnologiesUniversidad Central “Marta Abreu” de Las Villas (UCLV)Cuba

Personalised recommendations