Advertisement

Predicting HIV-1 Protease and Reverse Transcriptase Drug Resistance Using Fuzzy Cognitive Maps

  • Isel Grau
  • Gonzalo Nápoles
  • María M. García
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)

Abstract

Several antiviral drugs have been approved for treating HIV infected patients. These drugs inhibit the function of proteins which are essential in the virus life cycle, thus preventing the virus reproduction. However, due to its high mutation rate the HIV is capable to develop resistance to administered therapy. For this reason, it is important to study the resistance mechanisms of the HIV proteins in order to make a better use of existing drugs and design new ones. In the last ten years, numerous statistical and machine learning approaches were applied for predicting drug resistance from protein genome information. In this paper we first review the most relevant techniques reported for addressing this problem. Afterward, we describe a Fuzzy Cognitive Map based modeling which allows representing the causal interactions among the protein positions and their influence on the resistance. Finally, an extended comparison experimentation is carried out, which reveals that this model is competitive with well-known approaches and notably outperforms other techniques from literature.

Keywords

HIV proteins Drug resistance Prediction Fuzzy Cognitive Maps 

References

  1. 1.
    Tang, M.W., Shafer, R.W.: HIV-1 Antiretroviral Resistance Scientific Principles and Clinical Applications. Drugs 72(9), 1–25 (2012)CrossRefGoogle Scholar
  2. 2.
    Beerenwinkel, N., et al.: Computational methods for the design of effective therapies against drug resistant HIV strains. Bioinformatics 21, 3943–3950 (2005)CrossRefGoogle Scholar
  3. 3.
    Grau, I., Nápoles, G., León, M., Grau, R.: Fuzzy Cognitive Maps for Modelling, Predicting and Interpreting HIV Drug Resistance. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.) IBERAMIA 2012. LNCS, vol. 7637, pp. 31–40. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Nápoles, G., Grau, I., León, M., Grau, R.: Modelling, aggregation and simulation of a dynamic biological system through Fuzzy Cognitive Maps. In: Batyrshin, I., Mendoza, M.G. (eds.) MICAI 2012, Part II. LNCS, vol. 7630, pp. 188–199. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Kosko, B.: Fuzzy Cognitive Maps. Int. Journal of Man-Machine Studies 24, 65–75 (1986)CrossRefzbMATHGoogle Scholar
  6. 6.
    Laethem, K., et al.: A genotypic drug resistance interpretation algorithm that significantly predicts therapy response in HIV-1-infected patients. Antiviral Therapy 7, 123–129 (2002)Google Scholar
  7. 7.
    Rousseau, M.N., et al.: Patterns of resistance mutations to antiretroviral drugs in extensively treated HIV-1-infected patients with failure of highly active antiretroviral therapy. Journal of Acquired Immune Deficiency Syndromes 26, 36–43 (2001)Google Scholar
  8. 8.
    Reid, C., et al.: A dynamic rules-based interpretation system derived by an expert panel is predictive of virological failure. Antiviral Therapy 7, S91 (2002)Google Scholar
  9. 9.
    Rhee, S.Y., et al.: Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Research 31, 298–303 (2003)CrossRefGoogle Scholar
  10. 10.
    Ravela, J., et al.: HIV-1 Protease and Reverse Transcriptase Mutation Patterns Responsible for Discordances Between Genotypic Drug Resistance Interpretation Algorithms. Journal of Acquired Immune Deficiency Syndromes 33, 8–14 (2003)CrossRefGoogle Scholar
  11. 11.
    Beerenwinkel, N., et al.: Geno2pheno: estimating phenotypic drug resistance from HIV-1 genotypes. Nucleic Acids Research 31, 3850–38505 (2003)CrossRefGoogle Scholar
  12. 12.
    Draghici, S., Potter, R.B.: Predicting HIV drug resistance with neural networks. Bioinformatics 19, 98–107 (2003)CrossRefGoogle Scholar
  13. 13.
    Woods, M., Carpenter, G.A.: Neural Network and Bioinformatic Methods for Predicting HIV-1 Protease Inhibitor Resistance. Technical Report 02215 (2007)Google Scholar
  14. 14.
    Pasomsub, E., et al.: The Application of Articial Neural Networks for Phenotypic Drug Resistance Prediction: Evaluation and Comparison with Other Interpretation Systems. Jpn. Journal of Infectious Diseases 63, 87–94 (2010)Google Scholar
  15. 15.
    Bonet, I., García, M.M., Saeys, Y., Van de Peer, Y., Grau, R.: Predicting Human Immunodeficiency Virus (HIV) Drug Resistance Using Recurrent Neural Networks. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4527, pp. 234–243. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Wang, K., et al.: Simple linear model provides highly accurate genotypic predictions of HIV-1 drug resistance. Antiviral Therapy 9, 343–352 (2004)Google Scholar
  17. 17.
    Rabinowitz, M., et al.: Accurate prediction of HIV-1 drug response from the reverse transcriptase and protease amino acid sequences using sparse models created by convex optimization. Bioinformatics 22, 541–549 (2005)CrossRefGoogle Scholar
  18. 18.
    Rhee, S.Y., et al.: Genotypic predictors of human immunodeficiency virus type 1 drug resistance. PNAS 103, 17355–17360 (2006)CrossRefGoogle Scholar
  19. 19.
    Saigo, H., Uno, T., Tsuda, K.: Mining complex genotypic features for predicting HIV-1 drug resistance. Bioinformatics 23, 2455–2462 (2007)CrossRefGoogle Scholar
  20. 20.
    Rhee, S.Y., et al.: HIV-1 Protease Mutations and Protease Inhibitor Cross-Resistance. Antimicrobial Agents and Chemotherapy 54, 4253–4261 (2010)CrossRefGoogle Scholar
  21. 21.
    Masso, M.: HIV-1 Prediction of Human Immunodeciency Virus Type 1 Drug Resistance: Representation of Target Sequence Mutational Patterns via an n-Grams Approach. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 1–6 (2010)Google Scholar
  22. 22.
    Song, H.J., et al.: An Extension to Fuzzy Cognitive Maps for Classification and Prediction. IEEE Transactions on Fuzzy Systems 19, 116–135 (2011)CrossRefGoogle Scholar
  23. 23.
    Miyazawa, S., Jernigan, R.L.: Contacts energies Self-Consistent Estimation of Inter-Residue Protein Contact Energies Based on an Equilibrium Mixture Approximation of Residues. PROTEINS: Structure, Function, and Genetics 34, 49–68 (1999)CrossRefGoogle Scholar
  24. 24.
    Bonet, I., et al.: Multi-Classifier Based on Hard Instances- New Method for Prediction of Human Immunodeficiency Virus Drug Resistance. Current Topics in Medicinal Chemistry 13, 685–695 (2013)CrossRefGoogle Scholar
  25. 25.
    Grau, I., Nápoles, G., Bonet, I., Garcia, M.M.: Backpropagation Through Time Algorithm for Training Recurrent Neural Networks using Variable Length Instances. Computación y Sistemas 17, 15–24 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Isel Grau
    • 1
  • Gonzalo Nápoles
    • 1
  • María M. García
    • 1
  1. 1.Universidad Central “Marta Abreu” de Las VillasSanta ClaraCuba

Personalised recommendations