Using Graph Theory to Identify Aberrant Hierarchical Patterns in Parkinsonian Brain Networks

  • Rafael Rodriguez-Rojas
  • Gretel Sanabria
  • Lester Melie
  • Juan-Miguel Morales
  • Maylen Carballo
  • David Garcia
  • Jose A. Obeso
  • Maria C. Rodriguez-Oroz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)

Abstract

The topology of complex brain networks allows efficient dynamic interactions between spatially distinct regions. Neuroimaging studies have provided consistent evidence of dysfunctional connectivity among the cortical circuitry in Parkinson’s disease; however, little is known about the topological properties of brain networks underlying these alterations. This paper introduces a methodology to explore aberrant changes in hierarchical patterns of nodal centrality through cortical networks, combining graph theoretical analysis and morphometric connectivity. The edges in graph were estimated by correlation analysis and thresholding between 148 nodes defined by cortical regions. Our findings demonstrated that the networks organization was disrupted in the patients with PD. We found a reconfiguration in hierarchical weighting of high degree hubs in structural networks associated with levels of cognitive decline, probably related to a system-wide compensatory mechanism. Simulated targeted attack on the network’s nodes as measures of network resilience showed greater effects on information flow in advanced stages of disease.

Keywords

Brain networks MRI graph theory morphometric connectivity 

References

  1. 1.
    Bullmore, E., Sporns, O.: The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2013)CrossRefGoogle Scholar
  2. 2.
    He, Y., Evans, A.: Graph theoretical modeling of brain connectivity. Curr. Opin. Neurol. 23, 341–350 (2010)Google Scholar
  3. 3.
    Stam, C., Reijneveld, J.: Graph theoretical analysis of complex networks in the brain. Nonlinear Biomedical Physics 1, 3 (2007)CrossRefGoogle Scholar
  4. 4.
    Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104, 36–41 (2007)CrossRefGoogle Scholar
  5. 5.
    Tessitore, A., Esposito, F., Vitale, C., Santangelo, G., Amboni, M., Russo, A., Corbo, D., Cirillo, G., Barone, P., Tedeschi, G.: Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology 79, 2226–2232 (2012)CrossRefGoogle Scholar
  6. 6.
    Wu, T., Long, X., Wang, L., Hallett, M., Zang, Y., Li, K., Chan, P.: Functional connectivity of cortical motor areas in the resting state in Parkinson’s disease. Hum. Brain Mapp. 32, 1443–1457 (2011)CrossRefGoogle Scholar
  7. 7.
    Stoffers, D., Bosboom, J.L., Deijen, J.B., Wolters, E.C., Stam, C.J., Berendse, H.W.: Increased cortico-cortical functional connectivity in early-stage Parkinson’s disease: An MEG study. Neuroimage 41, 212–222 (2008)CrossRefGoogle Scholar
  8. 8.
    He, Y., Chen, Z., Evans, A.: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex 17, 2407–2419 (2007)CrossRefGoogle Scholar
  9. 9.
    Sanabria-Diaz, G., Melie-Garcia, L., Iturria, Y., Aleman, Y., Hernandez, G., Valdes, L., Galan, L., Valdes-Sosa, P.: Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks. Neuroimage 50, 1497–1510 (2010)CrossRefGoogle Scholar
  10. 10.
    Yao, Z., Zhang, Y., Lin, L., Zhou, Y., Xu, C., Jiang, T.: Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease. PLoS Comput. Biol. 6, e1001006 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.: Mild cognitive impairment- beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 256, 240–246 (2004)CrossRefGoogle Scholar
  12. 12.
    American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association, Washington, DC (1994)Google Scholar
  13. 13.
    Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D.: Automatically parcellating the human cerebral cortex. Cereb Cortex 14, 11–22 (2004)CrossRefGoogle Scholar
  14. 14.
    Destrieux, C., Fischl, B., Dale, A., Halgren, E.: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53, 1–15 (2010)CrossRefGoogle Scholar
  15. 15.
    Obeso, J.A., Rodriguez-Oroz, M.C., Benitez-Temino, B., Blesa, F.J., Guridi, J., Marin, C., Rodriguez, M.: Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov. Disord. 23, S548–S559 (2008)CrossRefGoogle Scholar
  16. 16.
    Sharman, M., Valabregue, R., Perlbarg, V., Marrakchi-Kacem, L., Vidailhet, M., Benali, H., Brice, A., Lehericy, S.: Parkinson’s Disease Patients Show Reduced Cortical-Subcortical Sensorimotor Connectivity. Movement Disorders 28, 447–454 (2013)CrossRefGoogle Scholar
  17. 17.
    Zarei, M., Ibarretxe, N., Compta, Y., Hough, M., Junque, C., Bargallo, N., Tolosa, E., Martí, M.J.: Cortical thinning is associated with disease stages and dementia in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 84, 875–881 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rafael Rodriguez-Rojas
    • 1
    • 2
  • Gretel Sanabria
    • 3
  • Lester Melie
    • 3
  • Juan-Miguel Morales
    • 1
  • Maylen Carballo
    • 1
  • David Garcia
    • 4
  • Jose A. Obeso
    • 4
  • Maria C. Rodriguez-Oroz
    • 4
  1. 1.International Centre for Neurological RestorationHavanaCuba
  2. 2.“Abdus Salam” International Centre for Theoretical PhysicsTriesteItaly
  3. 3.Cuban Neurosciences CenterHavanaCuba
  4. 4.Neuroscience Area, Applied Medical Research CentreUniversity of NavarraSpain

Personalised recommendations