Multi-step-ahead, Short-Term Prediction of Wind Speed Using a Fusion Approach

  • Julian L. Cardenas-Barrera
  • Eduardo Castillo-Guerra
  • Julian Meng
  • Liuchen Chang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)


Wind power generation is a green solution to power generation that is receiving increasing interest worldwide. Wind speed forecasting is critical for this technology to succeed and remains today as a challenge to the research community. This paper presents a neural network fusion approach to multi-step-ahead, short-term forecasting of wind speed time-series. Wind speed forecasts are generated using a bank of neural networks that combine predictions from three different forecasters. The wind speed forecasters include a naïve model; a physical model and a custom designed artificial neural network model. Data used in the experiments are telemetric measurements of weather variables from wind farms in Eastern Canada, covering the period from November 2011 to October 2012. Our results show that the combination of three different forecasters leads to substantial performance improvements over recommended reference models.


Short-term wind speed forecasting artificial neural networks forecast combination 


  1. 1.
    Zhu, X., Genton, M.G.: Short-Term Wind Speed Forecasting for Power System Operations. International Statistical Review 80, 2–23 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Foley, A.M., Leahy, P.G., Marvuglia, A., McKeogh, E.J.: Current methods and advances in forecasting of wind power generation. Renewable Energy 37, 1–8 (2012)CrossRefGoogle Scholar
  3. 3.
    Stathopoulos, C., Kaperoni, A., Galanis, G., Kallos, G.: Wind power prediction based on numerical and statistical models. Journal of Wind Engineering and Industrial Aerodynamics 112, 25–38 (2013)CrossRefGoogle Scholar
  4. 4.
    Wang, X., Guo, P., Huang, X.: A Review of Wind Power Forecasting Models. Energy Procedia 12, 770–778 (2011)CrossRefGoogle Scholar
  5. 5.
    Soman, S.S., Zareipour, H., Malik, O., Mandal, P.: A review of wind power and wind speed forecasting methods with different time horizons. In: North American Power Symposium (NAPS), pp. 1–8 (2010)Google Scholar
  6. 6.
    Lange, M., Focken, U.: New developments in wind energy forecasting. In: 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1–8 (2008)Google Scholar
  7. 7.
    Costa, A., Crespo, A., Navarro, J., Lizcano, G., Madsen, H., Feitosa, E.: A review on the young history of the wind power short-term prediction. Renewable and Sustainable Energy Reviews 12, 1725–1744 (2008)CrossRefGoogle Scholar
  8. 8.
    Ernst, B., Oakleaf, B., Ahlstrom, M.L., Lange, M., Moehrlen, C., Lange, B., Focken, U., Rohrig, K.: Predicting the Wind. IEEE Power and Energy Magazine 5, 78–89 (2007)CrossRefGoogle Scholar
  9. 9.
    Madsen, H., Pinson, P., Kariniotakis, G., Nielsen, H.A., Nielsen, T.: Standardizing the Performance Evaluation of ShortTerm Wind Power Prediction Models. Wind Engineering 29, 475–489 (2005)CrossRefGoogle Scholar
  10. 10.
    Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., Draxl, C.: The state-of-the-art in short-term prediction of wind power: A literature overview. ANEMOS. plus (2011)Google Scholar
  11. 11.
    Salcedo-Sanz, S., Pérez-Bellido, Á.M., Ortiz-García, E.G., Portilla-Figueras, A., Prieto, L., Correoso, F.: Accurate short-term wind speed prediction by exploiting diversity in input data using banks of artificial neural networks. Neurocomputing 72, 1336–1341 (2009)CrossRefGoogle Scholar
  12. 12.
    Kusiak, A., Zheng, H., Song, Z.: Short-term prediction of wind farm power: a data mining approach. IEEE Transactions on Energy Conversion 24, 125–136 (2009)CrossRefGoogle Scholar
  13. 13.
    Li, G., Shi, J.: On comparing three artificial neural networks for wind speed forecasting. Applied Energy 87, 2313–2320 (2010)CrossRefGoogle Scholar
  14. 14.
    Donaldson, R.G., Kamstra, M.: Forecast combining with neural networks. Journal of Forecasting 15, 49–61 (1996)CrossRefGoogle Scholar
  15. 15.
    Palit, A.K., Popovic, D.: Nonlinear combination of forecasts using artificial neural network, fuzzy logic and neuro-fuzzy approaches. In: The Ninth IEEE International Conference on Fuzzy Systems, FUZZ IEEE 2000, vol. 2, pp. 566–571 (2000)Google Scholar
  16. 16.
    Aladag, C.H., Egrioglu, E., Yolcu, U.: Forecast Combination by Using Artificial Neural Networks. Neural Process. Lett. 32, 9156:269–9156:276 (2010)CrossRefGoogle Scholar
  17. 17.
    Timmermann, A.: Chapter 4 Forecast Combinations. In: Elliott, G., Granger, C.W.J., Timmermann, A. (eds.) Handbook of Economic Forecasting, pp. 135–196. Elsevier (2006)Google Scholar
  18. 18.
    Lange, M.: On the Uncertainty of Wind Power Predictions—Analysis of the Forecast Accuracy and Statistical Distribution of Errors. Journal of Solar Energy Engineering 127, 177 (2005)CrossRefGoogle Scholar
  19. 19.
    Strobl, C., Malley, J., Tutz, G.: An Introduction to Recursive Partitioning: Rationale, Application and Characteristics of Classification and Regression Trees, Bagging and Random Forests. Psychol. Methods 14, 323–348 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Julian L. Cardenas-Barrera
    • 1
  • Eduardo Castillo-Guerra
    • 2
  • Julian Meng
    • 2
  • Liuchen Chang
    • 2
  1. 1.Center for Studies on Electronics and Information TechnologiesUniversidad Central “Marta Abreu” de Las VillasSanta ClaraCuba
  2. 2.Department of Electrical and Computing EngineeringUniversity of New BrunswickFrederictonCanada

Personalised recommendations