Recent Progress on Object Classification and Detection

  • Tieniu Tan
  • Yongzhen Huang
  • Junge Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)

Abstract

Object classification and detection are two fundamental problems in computer vision and pattern recognition. In this paper, we discuss these two research topics, including their backgrounds, challenges, recent progress and our solutions which achieve excellent performance in PASCAL VOC competitions on object classification and detection. Moreover, potential directions are outlined for future research.

Keywords

Object classification Object detection PASCAL VOC 

References

  1. 1.
  2. 2.
  3. 3.
    Barla, A., Odone, F., Verri, A.: Histogram intersection kernel for image classification. In: Proc. IEEE Inter. Conf. Image. Process. (2003)Google Scholar
  4. 4.
    Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives. IEEE T-PAMI 35(8), 1798–1828 (2013)CrossRefGoogle Scholar
  5. 5.
    Bradley, D.M., Bagnell, J.A.: Differential sparse coding. In: Proc. Neu. Inf. Process. Sys. (2008)Google Scholar
  6. 6.
    Crandall, D., Felzenszwalb, P., Huttenlocher, D.: Spatial priors for part-based recognition using statistical models. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2005)Google Scholar
  7. 7.
    Csurka, G., Bray, C., Dance, C., Fan, L.: Visual categorization with bags of keypoints. In: Proc. Eur. Conf. Comput. Vis. (2004)Google Scholar
  8. 8.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2005)Google Scholar
  9. 9.
    Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE T-PAMI 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  10. 10.
    Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of adjacent contour segments for object detection. IEEE T-PAMI 30(1), 36–51 (2008)CrossRefGoogle Scholar
  11. 11.
    Fischler, M., Elschlager, R.: The representation and matching of pictorial structures. IEEE Trans. Comput. C-22(1), 67–92 (1973)CrossRefGoogle Scholar
  12. 12.
    van Gemert, J.C., Geusebroek, J.-M., Veenman, C.J., Smeulders, A.W.M.: Kernel codebooks for scene categorization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 696–709. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Huang, Y., Huang, K., Tao, D., Tan, T., Li, X.: Enhanced biological inspired model for object recognition. IEEE T-SMC-Part B 41(6), 1668–1680 (2011)Google Scholar
  14. 14.
    Huang, Y., Huang, K., Tao, D., Wang, L., Tan, T., Li, X.: Enhanced biological inspired model. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2008)Google Scholar
  15. 15.
    Huang, Y., Huang, K., Yu, Y., Tan, T.: Salient coding for image classification. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2011)Google Scholar
  16. 16.
    Huang, Y., Wu, Z., Wang, L., Tan, T.: Feature coding in image classification: A comprehensive study. IEEE T-PAMI (accepted, 2013)Google Scholar
  17. 17.
    Lampert, C.H., Blaschko, M.B., Hofmann, T.: Beyond sliding windows: Object localization by efficient subwindow search. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2008)Google Scholar
  18. 18.
    Lee, T.S.: Image representation using 2D gabor wavelets. IEEE T-PAMI 18, 959–971 (1996)CrossRefGoogle Scholar
  19. 19.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)CrossRefGoogle Scholar
  20. 20.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Supervised dictionary learning. In: NIPS (2008)Google Scholar
  21. 21.
    Mark, E., Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The Pascal Visual Object Classes (VOC) Challenge. IJCV 88(2), 303–338 (2010)CrossRefGoogle Scholar
  22. 22.
    Ojala, T., Petikainen, M., Harwood, D.: Performance evaluation of texture measures with classification based on kullback discrimination of distributions. In: Proc. IAPR Inter. Conf. Pattern Recognit. (1994)Google Scholar
  23. 23.
    Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2007)Google Scholar
  24. 24.
    Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Sande, K., Gevers, T., Snoek, C.: Evaluation of color descriptors for object and scene recognition. IEEE T-PAMI 32(9), 1582–1596 (1998)CrossRefGoogle Scholar
  26. 26.
    Schnitzspan, P., Roth, S., Schiele, B.: Automatic discovery of meaningful object parts with latent crfs. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2010)Google Scholar
  27. 27.
    Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE T-TPAMI 29(3), 411–426 (2007)CrossRefGoogle Scholar
  28. 28.
    Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object detection. In: Proc. IEEE Inter. Conf. Comput. Vis. (2009)Google Scholar
  29. 29.
    Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2010)Google Scholar
  30. 30.
    Wold, H.: Partial least squares. In: Encyclopedia of Statistical Sciences (2004)Google Scholar
  31. 31.
    Wu, Z., Huang, Y., Wang, L., Tan, T.: Group encoding of local features in image classification. In: Proc. IAPR Inter. Conf. Pattern Recognit. (2012)Google Scholar
  32. 32.
    Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2009)Google Scholar
  33. 33.
    Yu, K., Zhang, T.: Improved local coordinate coding using local tangents. In: Proc. Int. Conf. Mach. Learning (2010)Google Scholar
  34. 34.
    Yu, Y., Zhang, J., Huang, Y., Zheng, S., Ren, W., Wang, C., Huang, K., Tan, T.: Object detection by context and boosted hog-lbp. In: ECCV workshop on PASCAL VOC (2010)Google Scholar
  35. 35.
    Zhang, J., Huang, K., Yu, Y., Tan, T.: Boosted Local Structured HOG-LBP for Object Localization. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2011)Google Scholar
  36. 36.
    Zhang, J., Huang, Y., Huang, K., Wu, Z., Tan, T.: Data decomposition and spatial mixture modeling for part based model. In: Proc. Asi. Conf. Compt. Vis. (2013)Google Scholar
  37. 37.
    Zhang, J., Yu, Y., Huang, Y., Wang, C., Ren, W., Wu, J., Huang, K., Tan, T.: Object detection based on data decomposition, spatial mixture modeling and context. In: International Conference on Computer Vision Workshop on Visual Object Classes Challenge (2011)Google Scholar
  38. 38.
    Zhou, X., Yu, K., Zhang, T., Huang, T.S.: Image classification using super-vector coding of local image descriptors. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 141–154. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tieniu Tan
    • 1
  • Yongzhen Huang
    • 1
  • Junge Zhang
    • 1
  1. 1.Center for Research on Intelligent Perception and Computing (CRIPAC), National Laboratory of Pattern Recognition (NLPR), Institute of AutomationChinese Academy of Sciences, (CASIA)BeijingChina

Personalised recommendations