Advertisement

Evolutionary Optimisation of JPEG2000 Part 2 Wavelet Packet Structures for Polar Iris Image Compression

  • Jutta Hämmerle-Uhl
  • Michael Karnutsch
  • Andreas Uhl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8258)

Abstract

The impact of using evolutionary optimised wavelet subband stuctures as allowed in JPEG2000 Part 2 in polar iris image compression is investigated. The recognition performance of two different feature extraction schemes applied to correspondingly compressed images is compared to the usage of the dyadic decomposition structure of JPEG2000 Part 1 in the compression stage. Recognition performance is significantly improved, provided that the image set used in evolutionary optimisation and actual application is identical. Generalisation to different settings (individuals, sample acquisition conditions, feature extraction techniques) is found to be low.

Keywords

Recognition Performance Image Compression Wavelet Packet Evolutionary Optimisation Tournament Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Daugman, J., Downing, C.: Effect of severe image compression on iris recognition performance. IEEE Transactions on Information Forensics and Security 3(1), 52–61 (2008)CrossRefGoogle Scholar
  2. 2.
    Rathgeb, C., Uhl, A., Wild, P.: Iris Recognition: From Segmentation to Template Security. Advances in Information Security, vol. 59. Springer (2013)Google Scholar
  3. 3.
    Ives, R.W., Broussard, R.P., Kennell, L.R., Soldan, D.L.: Effects of image compression on iris recognition system performance. Journal of Electronic Imaging 17, 011015 (2008), doi:10.1117/1.2891313Google Scholar
  4. 4.
    Rakshit, S., Monro, D.: An evaluation of image sampling and compression for human iris recognition. IEEE Transactions on Information Forensics and Security 2(3), 605–612 (2007)CrossRefGoogle Scholar
  5. 5.
    Kasaei, S., Deriche, M., Boashash, B.: A novel fingerprint image compression technique using wavelet packets and pyramid lattice vector quantization. IEEE Transactions on Image Processing 12(11), 1365–1378 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bradley, J.N., Brislawn, C.M., Hopper, T.: The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression. In: SPIE Proceedings, Visual Information Processing II, Orlando, FL, USA, vol. 1961, pp. 293–304 (April 1993)Google Scholar
  7. 7.
    Hämmerle-Uhl, J., Karnutsch, M., Uhl, A.: Recognition impact of JPEG2000 part 2 wavelet packet subband structures in polar iris image compression. In: Zovko-Cihlar, B., Rupp, M., Mecklenbräuker, C. (eds.) Proceedings of the 19th International Conference on Systems, Signals and Image Processing (IWSSIP 2012), pp. 13–16 (2012)Google Scholar
  8. 8.
    Rajpoot, N.M., Wilson, R.G., Meyer, F.G., Coifman, R.R.: Adaptive wavelet packet basis selection for zerotree image coding. IEEE Transactions on Image Processing 12(12), 1460–1472 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Stütz, T., Uhl, A.: Efficient and rate-distortion optimal wavelet packet basis selection in JPEG2000. IEEE Transactions on Multimedia 14(2), 264–277 (2012)CrossRefGoogle Scholar
  10. 10.
    Taubman, D., Marcellin, M.: JPEG2000 — Image Compression Fundamentals, Standards and Practice. Kluwer Academic Publishers (2002)Google Scholar
  11. 11.
    Schell, T., Uhl, A.: Optimization and assessment of wavelet packet decompositions with evolutionary computation. EURASIP Journal on Applied Signal Processing 2003(8), 806–813 (2003)CrossRefzbMATHGoogle Scholar
  12. 12.
    Ko, J.G., Gil, Y.H., Yoo, J.H., Chung, K.I.: A novel and efficient feature extraction method for iris recognition. ETRI Journal 29(3), 399–401 (2007)CrossRefGoogle Scholar
  13. 13.
    Monro, D., Rakshit, S., Zhang, D.: DCT-based iris recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(4), 586–595 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jutta Hämmerle-Uhl
    • 1
  • Michael Karnutsch
    • 1
  • Andreas Uhl
    • 1
  1. 1.Multimedia Signal Processing and Security Lab Department of Computer SciencesUniversity of SalzburgAustria

Personalised recommendations