Advertisement

Stopping Criterion for the Mean Shift Iterative Algorithm

  • Yasel Garcés Suárez
  • Esley Torres
  • Osvaldo Pereira
  • Claudia Pérez
  • Roberto Rogríguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8258)

Abstract

Image segmentation is a critical step in computer vision tasks constituting an essential issue for pattern recognition and visual interpretation. In this paper, we propose a new stopping criterion for the mean shift iterative algorithm by using images defined in ℤ n ring, with the goal of reaching a better segmentation. We carried out also a study on the weak and strong of equivalence classes between two images. An analysis on the convergence with this new stopping criterion is carried out too.

Keywords

Image Segmentation Gray Level Segmented Image Scalar Image Stop Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Shannon, C.: A Mathematical Theory of Communication. Bell System Technology Journal 27, 370–423, 623–656 (1948)Google Scholar
  2. 2.
    Comaniciu, D.I.: Nonparametric Robust Method for Computer Vision. Thesis New Brunswick, Rutgers, The State University of New Jersey (2000)Google Scholar
  3. 3.
    Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 1–18 (2002)CrossRefGoogle Scholar
  4. 4.
    Rodriguez, R., Torres, E., Sossa, J.H.: Image Segmentation based on an Iterative Computation of the Mean Shift Filtering for different values of window sizes. International Journal of Imaging and Robotics 6(A11) 1–19 (2011)Google Scholar
  5. 5.
    Rodriguez, R., Suarez, A.G., Sossa, J.H.: A Segmentation Algorithm based on an Iterative Computation of the Mean Shift Filtering. Journal Intelligent & Robotic System 63(3-4), 447–463 (2011)CrossRefGoogle Scholar
  6. 6.
    Rodriguez, R., Torres, E., Sossa, J.H.: Image Segmentation via an Iterative Algorithm of the Mean Shift Filtering for Different Values of the Stopping Threshold. International Journal of Imaging and Robotics 7(6), 1–19 (2012)Google Scholar
  7. 7.
    Rodriguez, R.: Binarization of medical images based on the recursive application of mean shift filtering: Another algorithm. Journal of Advanced and Applications in Bioinformatics and Chemistry I, 1–12 (2008)Google Scholar
  8. 8.
    Dominguez, D., Rodriguez, R.: Convergence of the Mean Shift using the Linfinity Norm in Image Segmentation. International Journal of Pattern Recognition Research 1, 3–4 (2011)Google Scholar
  9. 9.
    Zhang, H., Fritts, J.E., Goldma, S.A.: An Entropy-based Objective Evaluation Method for Image Segmentation, Storage and Retrieval Methods and Applications for Multimedia. In: Proceeding of the SPIE, vol. 5307, pp. 38–49 (2003)Google Scholar
  10. 10.
    Suyash, P., Whitake, R.: Higher-Order Image Statistics for Unsupervised, Information-Theoretic, Adaptive, Image Filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(3), 364–376 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yasel Garcés Suárez
    • 1
  • Esley Torres
    • 1
  • Osvaldo Pereira
    • 1
  • Claudia Pérez
    • 1
  • Roberto Rogríguez
    • 1
  1. 1.Institute of Cybernetics, Mathematics and PhysicsHavanaCuba

Personalised recommendations