Using Boundary Conditions for Combining Multiple Descriptors in Similarity Based Queries

  • Rodrigo F. Barroso
  • Marcelo Ponciano-Silva
  • Agma Juci Machado Traina
  • Renato Bueno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8258)

Abstract

Queries dealing with complex data, such as images, face semantic problems that might compromise results quality. Such problems have their source on the differences found between the semantic interpretation of the data and their low level machine code representation. The descriptors utilized in such representation translate intrinsic characteristics of the data (usually color, shape and texture) into qualifying attributes. Different descriptors represent different intrinsic characteristics that can get different aspects of the data while processing a similarity comparison among them. Therefore, the use of multiple descriptors tends to improve data separation and categorization, if compared to the use of a single descriptor. Another relevant fact is that some specific intrinsic characteristics are essential for identifying a subset of the data. Based on such premises, this work proposes the use of boundary conditions to identify image subsets and then use the best descriptor combination for each of these subsets aimed at decreasing the existing “semantic gap”. Throughout the conducted experiments, the use of the proposed technique had better results when compared to individual descriptor use (employing the same boundary conditions) and to various descriptors combination without the use of boundary conditions.

Keywords

CBIR multiple descriptor combination similarity queries 

References

  1. 1.
    Deserno, T.M., Antani, S., Long, L.R.: Ontology of gaps in content-based image retrieval. J. Digital Imaging 22, 202–215 (2009)CrossRefGoogle Scholar
  2. 2.
    Bugatti, P.H., Traina, A.J.M., Traina, C.J.: Assessing the best integration between distance-function and image-feature to answer similarity queries. In: SAC, pp. 1225–1230 (2008)Google Scholar
  3. 3.
    Torres, R., Falcão, A.X., Gonçalves, M.A., Papa, J.P., Zhang, B., Fan, W., Fox, E.A.: A genetic programming framework for content-based image retrieval. Pattern Recognition 42, 283–292 (2009)CrossRefMATHGoogle Scholar
  4. 4.
    Bueno, R., Kaster, D.S., Paterlini, A.A., Traina, A.J.M., Traina, C.J.: Unsupervised scaling of multi-descriptor similarity functions for medical image datasets. In: CBMS, pp. 24–31 (2009)Google Scholar
  5. 5.
    Bueno, R., Kaster, D.S., Razente, H.L., Barioni, M.C.N., Traina, A.J.M., Traina, C.J.: Using visual analysis to weight multiple signatures to discriminate complex data. In: IV, pp. 282–287 (2011)Google Scholar
  6. 6.
    Ponciano-Silva, M., Traina, A.J.M., Azevedo-Marques, P.M., Felipe, J.C., Traina, C.J.: Including the perceptual parameter to tune the retrieval ability of pulmonary cbir systems. In: CBMS, pp. 8–17 (2009)Google Scholar
  7. 7.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search - The Metric Space Approach. Advances in Database Systems, vol. 32. Kluwer (2006)Google Scholar
  8. 8.
    Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance feedback: a power tool for interactive content-based image retrieval. IEEE Trans. Circuits Syst. Video Techn. 8, 644–655 (1998)CrossRefGoogle Scholar
  9. 9.
    Ferreira, C.D., dos Santos, J.A., Torres, R., Gonçalves, M.A., Rezende, R.C., Fan, W.: Relevance feedback based on genetic programming for image retrieval. Pattern Recognition Letters 32, 27–37 (2011)CrossRefGoogle Scholar
  10. 10.
    Arevalillo-Herráez, M., Ferri, F.J., Domingo, J.: A naive relevance feedback model for content-based image retrieval using multiple similarity measures. Pattern Recognition 43, 619–629 (2010)CrossRefMATHGoogle Scholar
  11. 11.
    Andrade, F.S.P., Almeida, J., Pedrini, H., da S.Torres, R.: Fusion of local and global descriptors for content-based image and video retrieval. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 845–853. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press/Addison-Wesley (1999)Google Scholar
  13. 13.
    Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. on Systems, Man and Cybernetics SMC-3, 610–621 (1973)CrossRefGoogle Scholar
  14. 14.
    Khotanzad, A., Hong, Y.H.: Invariant image recognition by zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 12, 489–497 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rodrigo F. Barroso
    • 1
  • Marcelo Ponciano-Silva
    • 3
    • 2
  • Agma Juci Machado Traina
    • 2
  • Renato Bueno
    • 1
  1. 1.Computer Science DeptUFSCarSão CarlosBrazil
  2. 2.Computer Science DeptICMC-USPSão CarlosBrazil
  3. 3.Computer Science DeptIFTMUberabaBrazil

Personalised recommendations