Advertisement

Benchmarking Datasets for Breast Cancer Computer-Aided Diagnosis (CADx)

  • Daniel Cardoso Moura
  • Miguel Angel Guevara López
  • Pedro Cunha
  • Naimy González de Posada
  • Raúl Ramos Pollan
  • Isabel Ramos
  • Joana Pinheiro Loureiro
  • Inês C. Moreira
  • Bruno M. Ferreira de Araújo
  • Teresa Cardoso Fernandes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8258)

Abstract

Designing reliable computer-aided diagnosis (CADx) systems based on data extracted from breast images and patient data to provide a second opinion to radiologists is still a challenging and yet unsolved problem. This paper proposes two benchmarking datasets (one of them representative of low resolution digitized Film Mammography images and the other one representative of high resolution Full Field Digital Mammography images) aimed to (1) modeling and exploring machine learning classifiers (MLC); (2) evaluating the impact of mammography image resolution on MLC; and (3) comparing the performance of breast cancer CADx methods. Also, we include a comparative study of four groups of image-based descriptors (intensity, texture, multi-scale texture and spatial distribution of the gradient), and combine them with patient’s clinical data to classify masses. Finally, we demonstrate that this combination of clinical data and image descriptors is advantageous in most CADx scenarios.

Keywords

Breast cancer image-based descriptors clinical data machine learning classifiers computer-aided diagnosis (CADx) histograms of gradient divergence 

References

  1. 1.
    Matheus, B.R., Schiabel, H.: Online Mammographic Images Database for Development and Comparison of CAD Schemes. Journal of Digital Imaging 24(3), 500–506 (2011)CrossRefGoogle Scholar
  2. 2.
    Christoyianni, I., Dermatas, E., Kokkinakis, G.: Fast detection of masses in computer-aided mammography. IEEE Signal Processing Magazine 17(1), 54–64 (2000)CrossRefGoogle Scholar
  3. 3.
    Marcano-Cedeño, A., Quintanilla-Domínguez, J., Andina, D.: WBCD breast cancer database classification applying artificial metaplasticity neural network. Expert Systems with Applications 38(8), 9573–9579 (2011)CrossRefGoogle Scholar
  4. 4.
    Ramos-Pollan, R., Guevara-Lopez, M.A., Oliveira, E.: A software framework for building biomedical machine learning classifiers through grid computing resources. J. Med. Syst. 36(4), 2245–2257 (2012)CrossRefGoogle Scholar
  5. 5.
    Antoniou, Z.C., et al.: A web-accessible mammographic image database dedicated to combined training and evaluation of radiologists and machines. In: 9th International Conference on Information Technology and Applications in Biomedicine, ITAB 2009 (2009)Google Scholar
  6. 6.
    de Oliveira, J., et al.: MammoSVD: A content-based image retrieval system using a reference database of mammographies. In: 22nd IEEE International Symposium on Computer-Based Medical Systems, CBMS 2009 (2009)Google Scholar
  7. 7.
    Oliveira, J.E.E., et al.: Toward a standard reference database for computer-aided mammography. In: Proceeding 6915 Medical Imaging 2008: Computer-Aided Diagnosis (2008)Google Scholar
  8. 8.
    Heath, M., et al.: Current status of the digital database for screening mammography. In: Digital Mammography, pp. 457–460. Kluwer Academic Publishers (1998)Google Scholar
  9. 9.
    Markey, M.K., et al.: Self-organizing map for cluster analysis of a breast cancer database. Artificial Intelligence in Medicine 27(2), 113–127 (2003)CrossRefGoogle Scholar
  10. 10.
    Nishikawa, R.M.: Mammographic databases. Breast Dis. 10(3-4), 137–150 (1998)MathSciNetGoogle Scholar
  11. 11.
    Suckling, J.: The Mammographic Image Analysis Society Digital Mammogram Database in Exerpta Medica. International Congress Series, vol. 1069, pp. 375–378 (1994)Google Scholar
  12. 12.
    Moreira, I.C., et al.: INbreast: Toward a Full-field Digital Mammographic Database. Academic Radiology 19(2), 236–248 (2012)CrossRefGoogle Scholar
  13. 13.
    Ramos-Pollan, R., et al.: Discovering mammography-based machine learning classifiers for breast cancer diagnosis. J. Med. Syst. 36(4), 2259–2269 (2012)CrossRefGoogle Scholar
  14. 14.
    Moura, D., Guevara López, M.: An evaluation of image descriptors combined with clinical data for breast cancer diagnosis. International Journal of Computer Assisted Radiology and Surgery, 1–14 (2013)Google Scholar
  15. 15.
    Hall, M., et al.: The WEKA data mining software: an update. SIGKDD Explorations 11(1), 10–18 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel Cardoso Moura
    • 1
  • Miguel Angel Guevara López
    • 2
    • 1
  • Pedro Cunha
    • 1
  • Naimy González de Posada
    • 1
  • Raúl Ramos Pollan
    • 3
  • Isabel Ramos
    • 4
  • Joana Pinheiro Loureiro
    • 4
  • Inês C. Moreira
    • 4
  • Bruno M. Ferreira de Araújo
    • 4
  • Teresa Cardoso Fernandes
    • 4
  1. 1.INEGI - Institute of Mechanical Engineering and Industrial Management, Faculty of EngineeringUniversity of PortoPortugal
  2. 2.DETI - Department of Electronics, Telecommunications and InformaticsUniversity of AveiroPortugal
  3. 3.Universidad Industrial de SantanderBucaramangaColombia
  4. 4.FMUP-HSJ - Faculty of Medicine - Centro Hospitalar São JoãoUniversity of PortoPortugal

Personalised recommendations