Easy Categorization of Attributes in Decision Tables Based on Basic Binary Discernibility Matrix

  • Manuel S. Lazo-Cortés
  • José Francisco Martínez-Trinidad
  • Jesús Ariel Carrasco-Ochoa
  • Guillermo Sánchez-Díaz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8258)


Attribute reduction is an important issue in classification problems. This paper proposes a novel method for categorizing attributes in a decision table based on transforming the binary discernibility matrix into a simpler one called basic binary discernibility matrix. The effectiveness of the method is theoretically demonstrated. Experiments show application results of the proposed method.


Attribute reduction rough sets reduct binary discernibility matrix 


  1. 1.
    Pawlak, Z.: Rough sets. International Journal of Computer Information and Science 11, 341–356 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Nguyen, L.G., Nguyen, H.S.: On elimination of redundant attributes in decision tables. In: Ganzha, M., Maciaszek, L., Paprzucki, M. (eds.) Proceedings of the Federated Conference on Computer Science and Information Systems, pp. 317–322. IEEE Computer Society Press, Alamitos (2012)Google Scholar
  3. 3.
    Hashemi, R.R., Bahrami, A., Smith, M., Young, S.: Identification of Core, Semi-Core and Redundant Attributes of a Dataset. In: Eighth International Conference on Information Technology: New Generations, pp. 580–584. IEEE Computer Society, Washington, DC (2011)Google Scholar
  4. 4.
    Linyuan, G., Yanyun, C., Jianlin, Q.: Research advances of attribute reduction based on rough sets. In: 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 143–247. IEEE (2012)Google Scholar
  5. 5.
    Felix, R., Ushio, T.: Rough sets-based machine learning using a binary discernibility matrix. In: Meech, J.A., Veiga, M.M., Smith, M.H., LeClair, S.R. (eds.) Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials, pp. 299–305. IEEE Press, New York (1999)Google Scholar
  6. 6.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Dordrecht (1991)CrossRefzbMATHGoogle Scholar
  7. 7.
    Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowiński, R. (ed.) Intelligent Decision Support, Handbook of Applications and Advances of the Rough Sets Theory. Kluwer, Dordrecht (1992)Google Scholar
  8. 8.
    Bache, K., Lichman, M.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2013), Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Manuel S. Lazo-Cortés
    • 1
  • José Francisco Martínez-Trinidad
    • 1
  • Jesús Ariel Carrasco-Ochoa
    • 1
  • Guillermo Sánchez-Díaz
    • 2
  1. 1.Instituto Nacional de AstrofísicaÓptica y ElectrónicaPueblaMéxico
  2. 2.Universidad Autónoma de San Luis PotosíSan Luis PotosíMéxico

Personalised recommendations