Advertisement

Learning Stability Features on Sigmoid Fuzzy Cognitive Maps through a Swarm Intelligence Approach

  • Gonzalo Nápoles
  • Rafael Bello
  • Koen Vanhoof
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8258)

Abstract

Fuzzy Cognitive Maps (FCM) are a proper knowledge-based tool for modeling and simulation. They are denoted as directed weighted graphs with feedback allowing causal reasoning. According to the transformation function used for updating the activation value of concepts, FCM can be grouped in two large clusters: discrete and continuous. It is notable that FCM having discrete outputs never exhibit chaotic states, but this premise can not be ensured for FCM having continuous output. This paper proposes a learning methodology based on Swarm Intelligence for estimating the most adequate transformation function for each map neuron (concept). As a result, we can obtain FCM showing better stability properties, allowing better consistency in the hidden patterns codified by the map. The performance of the proposed methodology is studied by using six challenging FCM concerning the field of the HIV protein modeling.

Keywords

Fuzzy Cognitive Maps Stability Learning Swarm Intelligence 

References

  1. 1.
    Kosko, B.: Fuzzy Cognitive Maps. Int. Journal of Man-Machine Studies 24, 65–75 (1986)CrossRefzbMATHGoogle Scholar
  2. 2.
    Kosko, B.: Neural Networks and Fuzzy systems, a dynamic system approach to machine intelligence. Prentice-Hall, Englewood Cliffs (1992)Google Scholar
  3. 3.
    Papageorgiou, E.P.: Learning Algorithms for Fuzzy Cognitive Maps—A Review Study. IEEE Tran. on Systems, Man, and Cybernetics 42, 150–163 (2012)CrossRefGoogle Scholar
  4. 4.
    Papageorgiou, E.P.: Review study on Fuzzy Cognitive Maps and their applications during the last decade. In: IEEE International Conference on Fuzzy Systems, pp. 828–835 (2011)Google Scholar
  5. 5.
    Bueno, S., Salmeron, J.L.: Benchmarking main activation functions in Fuzzy cognitive maps. Expert Syst. Appl. 36, 5221–5229 (2009)CrossRefGoogle Scholar
  6. 6.
    Kosko, B.: Hidden patterns in combined and adaptive knowledge networks. International Journal of Approximate Reasoning 2, 377–393 (1988)CrossRefzbMATHGoogle Scholar
  7. 7.
    Tsadiras, A.K.: Comparing the inference capabilities of binary, trivalent and sigmoid fuzzy cognitive maps. Information Science 178, 3880–3894 (2008)CrossRefGoogle Scholar
  8. 8.
    Stylios, C.D., Groumpos, P.P.: Mathematical Formulation of Fuzzy Cognitive Maps. In: 7th Mediterranean Conference on Control and Automation, pp. 28–30 (1999)Google Scholar
  9. 9.
    Kennedy, J., Russell, C.E.: Swarm Intelligence. Morgan Kaufmann Publishers (2001)Google Scholar
  10. 10.
    Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: IEEE International Conference on Neural Networks, Australia, pp. 1942–1948 (1995)Google Scholar
  11. 11.
    Nápoles, G., Grau, I., Bello, R.: Particle Swarm Optimization with Random Sampling in Variable Neighbourhoods for solving Global Minimization Problems. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 352–353. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Nápoles, G., Grau, I., Bello, R.: Constricted Particle Swarm Optimization based Algorithm for Global Optimization. POLIBITS - Research Journal on Computer Science and Computer Engineering with Applications 46, 5–12 (2012)Google Scholar
  13. 13.
    Grau, I., Nápoles, G., León, M., Grau, R.: Fuzzy Cognitive Maps for Modelling, Predicting and Interpreting HIV Drug Resistance. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.) IBERAMIA 2012. LNCS (LNAI), vol. 7637, pp. 31–40. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Nápoles, G., Grau, I., León, M., Grau, R.: Modelling, aggregation and simulation of a dynamic biological system through Fuzzy Cognitive Maps. In: Batyrshin, I., Mendoza, M.G. (eds.) MICAI 2012, Part II. LNCS, vol. 7630, pp. 188–199. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Stanford HIV Drug Resistance Database, http://hivdb.stanford.edu
  16. 16.
    Miyazawa, S., Jernigan, R.L.: Contacts energies Self-Consistent Estimation of Inter-Residue Protein Contact Energies Based on an Equilibrium Mixture Approximation of Residues. PROTEINS: Structure, Function, and Genetics 34, 49–68 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gonzalo Nápoles
    • 1
  • Rafael Bello
    • 1
  • Koen Vanhoof
    • 2
  1. 1.Universidad Central “Marta Abreu” de Las VillasSanta ClaraCuba
  2. 2.Hasselt UniversityHasseltBelgium

Personalised recommendations