New Penalty Scheme for Optimal Subsequence Bijection

  • Laura Alejandra Pinilla-Buitrago
  • José Francisco Martínez-Trinidad
  • Jesús Ariel Carrasco-Ochoa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8258)

Abstract

Optimal Subsequence Bijection (OSB) is a method that allows comparing two sequences of endnodes of two skeleton graphs which represent articulated shapes of 2D images. The OSB dissimilarity function uses a constant penalty cost for all endnodes not matching between two skeleton graphs; this can be a problem, especially in those cases where there is a big amount of not matching endnodes. In this paper, a new penalty scheme for OSB, assigning variable penalties on endnodes not matching between two skeleton graphs, is proposed. The experimental results show that the new penalty scheme improves the results on supervised classification, compared with the original OSB.

Keywords

skeleton graph classification matching 

References

  1. 1.
    Sebastian, T.B., Kimia, B.B.: Curves vs Skeleton in Object Recognition. Signal Processing 85(2), 247–263 (2005)CrossRefGoogle Scholar
  2. 2.
    Basri, R., Costa, L., Geiger, D., Jacobs, D.: Determinig the Similarity of Deformable Shapes. Vision Research 38, 2365–2385 (1998)CrossRefGoogle Scholar
  3. 3.
    Huttenlocher, D.P., Klandeman, G.A., Rucklidge, W.J.: Comparing Images Using the Hausdorff Distance. IEEE Transaction Pattern Analysis and Machine Intelligence 15(9), 850–863 (1993)CrossRefGoogle Scholar
  4. 4.
    Belongie, S., Puzhicha, J., Malik, J.: Shape Matching and Object Recognition Using Shape Contexts. IEEE Transaction Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)CrossRefGoogle Scholar
  5. 5.
    Bai, X., Latecki, L.: Path Similarity Skeleton Graph Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 1282–1292 (2008)CrossRefGoogle Scholar
  6. 6.
    Shen, W., Wang, Y., Bai, X., Wang, L., Latecki, L.: Shape Clustering Common Structure Discovery. Pattern Recognition 64, 539–550 (2013)CrossRefGoogle Scholar
  7. 7.
    Zhu, S.C., Yuille, A.L.: FORMS: A Flexible Object Recognition and Modeling Sys-tem. Proceedings of International Journal of Computer Vision 20(3), 187–212 (1996)Google Scholar
  8. 8.
    Liu, T., Geiger, D.: Approximate Tree Matching and Shape Similarity. In: Proceedings of IEEE 7th International Conference on Computer Vision, pp. 456–462 (1999)Google Scholar
  9. 9.
    Siddiqi, K., Shkoufandeh, A., Zucker, S.: Shock Graphs and Shape Matching. Proceedings of International Journal of Computer Vision 35, 13–32 (1998)CrossRefGoogle Scholar
  10. 10.
    Shokoufandeh, A., Macrini, D., Dickinson, S., Siddiqi, K., Zucker, S.W.: Indexing Hierarchical Structures Using Graphs Spectra. IEEE Trans. Pattern Analysis and Machine Intelligence 27, 1125–1140 (2005)CrossRefGoogle Scholar
  11. 11.
    Sebastian, T.B., Klein, P., Kimia, B.B.: Recognition of Shapes by Editing Shocks Graphs. In: Proceedings of International Conference in Computer Vision, pp. 755–762 (2001)Google Scholar
  12. 12.
    Torsello, A., Hancock, E.R.: A Skeletal Measure of 2D Shape Similarity. Computer Vision and Image Understanding 95, 1–29 (2004)CrossRefGoogle Scholar
  13. 13.
    Bai, X., Liu, W., Tu, Z.: Integrating contour and skeleton for shape classification. In: IEEE 12th International Conference on Computer Vision Workshops (2009)Google Scholar
  14. 14.
    Bai, X., Latecki, L.J.: Discrete Skeleton Evolution. In: Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679, pp. 362–374. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Laura Alejandra Pinilla-Buitrago
    • 1
  • José Francisco Martínez-Trinidad
    • 1
  • Jesús Ariel Carrasco-Ochoa
    • 1
  1. 1.Óptica y Electrónica, Departamento de Ciencias ComputacionalesInstituto Nacional de AstrofísicaPueblaMéxico

Personalised recommendations