Advertisement

Dynamic K: A Novel Satisfaction Mechanism for CAR-Based Classifiers

  • Raudel Hernández-León
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8258)

Abstract

In this paper, we propose a novel satisfaction mechanism, named “Dynamic K”, which could be introduced in any Class Association Rules (CAR) based classifier, to determine the class of unseen transactions. Experiments over several datasets show that the new satisfaction mechanism has better performance than the main satisfaction mechanism reported (“Best Rule”, “Best K Rules” and “All Rules”). Additionally, the experiments show that “Dynamic K” obtains the best results independent of the CAR-based classifier used.

Keywords

Supervised classification Satisfaction mechanisms Class association rules 

References

  1. 1.
    Clark, P., Boswell, R.: Rule Induction with CN2: Some Recent Improvments. In: Proc. of European Working Session on Learning, pp. 151–163 (1991)Google Scholar
  2. 2.
    Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Proc. of the KDD, pp. 80–86 (1998)Google Scholar
  3. 3.
    Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on multiple class-association rules. In: Proc. of the ICDM, pp. 369–376 (2001)Google Scholar
  4. 4.
    Coenen, F.: The LUCS-KDD discretised/normalised ARM and CARM Data Library (2003), http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN
  5. 5.
    Yin, X., Han, J.: CPAR: Classification based on Predictive Association Rules. In: Proc. of the SIAM International Conference on Data Mining, pp. 331–335 (2003)Google Scholar
  6. 6.
    Wang, J., Karypis, G.: HARMONY: Efficiently mining the best rules for classification. In: Proc. of SDM, pp. 205–216 (2005)Google Scholar
  7. 7.
    Coenen, F., Leng, P., Zhang, L.: Threshold Tuning for Improved Classification Association Rule Mining. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 216–225. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Steinbach, M., Kumar, V.: Generalizing the notion of confidence. Knowl. Inf. Syst. 12(3), 279–299 (2007)CrossRefGoogle Scholar
  10. 10.
    Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html
  11. 11.
    Wang, Y.J., Xin, Q., Coenen, F.: A Novel Rule Weighting Approach in Classification Association Rule Mining. In: International Conference on Data Mining Workshops, pp. 271–276 (2007)Google Scholar
  12. 12.
    Wang, Y.J., Xin, Q., Coenen, F.: A Novel Rule Ordering Approach in Classification Association Rule Mining. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 339–348. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Cheng, H., Yan, X., Han, J., Philip, S.Y.: Direct Discriminative Pattern Mining for Effective Classification. In: Proc. of the ICDE, pp. 169–178 (2008)Google Scholar
  14. 14.
    Wang, Y.J., Xin, Q., Coenen, F.: Hybrid Rule Ordering in Classification Association Rule Mining. Trans. MLDM 1(1), 1–15 (2008)Google Scholar
  15. 15.
    Karabatak, M., Ince, M.C.: An expert system for detection of breast cancer based on association rules and neural network. Expert Syst. Appl. 36, 3465–3469 (2009)CrossRefGoogle Scholar
  16. 16.
    Park, S.H., Reyes, J.A., Gilbert, D.R., Kim, J.W., Kim, S.: Prediction of protein-protein interaction types using association rule based classification. BMC Bioinformatics 10(1) (2009)Google Scholar
  17. 17.
    Bae, J.K., Kim, J.: Integration of heterogeneous models to predict consumer behavior. Expert Syst. Appl. 37, 1821–1826 (2010)CrossRefGoogle Scholar
  18. 18.
    Hernández, R., Carrasco, J.A., Martínez, F.J., Hernández, J.: Classifying using Specific Rules with High Confidence. In: Proc. of the MICAI, pp. 75–80 (2010)Google Scholar
  19. 19.
    Malik, W.A., Unwin, A.: Automated error detection using association rules. Intelligent Data Analysis 15(5), 749–761 (2011)Google Scholar
  20. 20.
    Hernández, R., Carrasco, J.A., Martínez, F.J., Hernández, J.: CAR-NF: A Classifier based on Specific Rules with High Netconf. Intelligent Data Analysis 16(1), 49–68 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Raudel Hernández-León
    • 1
  1. 1.Centro de Aplicaciones de Tecnologías de Avanzada (CENATAV)La HabanaCuba

Personalised recommendations