Skip to main content

Plant Cell Responses to Cadmium and Zinc

  • Chapter
  • First Online:
Applied Plant Cell Biology

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 22))

Abstract

Control of uptake, radial transport, translocation and accumulation of cadmium (Cd) or excessive amounts of zinc (Zn) from the polluted environment to vegetative and generative organs of plants is critical both for plants and in consequence also for human beings in relation with food safety. These processes are controlled by checkpoints at specific sites of the plant body. These checkpoints are represented by cells at the root surface, the root cortex, and the cells responsible for loading of the root xylem, the transition between the vascular systems of root and shoot, and the connecting tissues and cells at the nodes of the segmented stem. Control by these checkpoints is based on the structural and functional characteristics of specialized cells and tissues. The present contribution reviews the mechanisms of Cd and Zn uptake, transport and deposition, tissue and cellular localization as well as various proteomic and metabolomic responses. The knowledge on the responses of plant cells to Cd and excessive amounts of Zn might inspire further research focused on these topics and is essential to use plants for phytoremediation (restoration of contaminated sites) and phytofortification (improved quality of food and feed), thus improving human well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals, 2nd edn. Springer, New York

    Google Scholar 

  • Ahrland S, Chatt J, Davies NR (1958) The relative affinities of ligand atoms for acceptor molecules and ions. Q Rev Chem Soc 12:265–276

    CAS  Google Scholar 

  • Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S (2007) Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot 59:381–392

    CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals – concepts and applications. Chemosphere 91:869–881

    CAS  PubMed  Google Scholar 

  • Aloni R, Griffith M (1991) Functional xylem anatomy in root–shoot junctions of 6 cereal species. Planta 184:123–129

    CAS  PubMed  Google Scholar 

  • Aloui A, Recorbet G, Gollotte A, Robert F, Valot B, Gianinazzi-Pearson V, Aschi-Smiti S, Dumas-Gaudot E (2009) On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Proteomics 9:420–433

    CAS  PubMed  Google Scholar 

  • Aloui A, Recorbet G, Robert F, Schoefs B, Bertrand M, Henry C, Gianinazzi-Pearson V, Dumas-Gaudot E, Aschi-Smiti S (2011) Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula. BMC Plant Biol 11:75

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM (2009) Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 9:2419–2431

    CAS  PubMed  Google Scholar 

  • Arduini I, Godbold DL, Onnis A (1996) Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiol Plant 97:111–117

    CAS  Google Scholar 

  • Armstrong J, Armstrong W (2005) Rice: sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Ann Bot 96:625–638

    CAS  PubMed  Google Scholar 

  • Azzarello E, Pandolfini C, Giordano C, Rossi M, Mungai S, Mancuso S (2012) Ultramorphological and physiological modifications induced by high zinc levels. Environ Exp Bot 81:11–17

    CAS  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250–251:477–483

    PubMed  Google Scholar 

  • Baekgaard L, Mikkelsen MD, Sorensen DM, Hegelund JN, Persson DP, Mills RF, Yang Z, Husted S, Andersen JP, Buch-Pedersen MJ, Schjoerring JK, Williams LE, Palmgren MG (2010) A combined zinc/cadmium sensor and zinc/cadmium export regulator in a heavy metal pump. J Biol Chem 285:31243–31252

    CAS  PubMed  Google Scholar 

  • Baker AJM, Whiting SN (2002) In search of the Holy Grail – a further step in understanding metal hyperaccumulation? New Phytol 155:1–4

    Google Scholar 

  • Baxter I, Hosmani PS, Rus A, Lahner B, Borevitz JO, Muthukumar B, Mickelbart MV, Schreiber L, Franke RB, Salt DE (2009) Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis. PLoS Genet 5:e1000492

    PubMed Central  PubMed  Google Scholar 

  • Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    CAS  PubMed  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    CAS  Google Scholar 

  • Bertin C, Yang XH, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    CAS  Google Scholar 

  • Broadhurst CL, Bauchan GR, Murphy CA, Tang YT, Pooley C, Davis AP, Chaney RL (2013) Accumulation of zinc and cadmium and localization of zinc in Picris divaricata Vant. Environ Exp Bot 87:1–9

    CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    CAS  PubMed  Google Scholar 

  • Brunner I, Luster J, Günthardt-Goerg MS, Frey B (2008) Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 152:559–568

    CAS  PubMed  Google Scholar 

  • Cailliatte R, Lapeyre B, Briat JF, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422:217–228

    CAS  PubMed  Google Scholar 

  • Caspary R (1866) Bemerkungen über die Schutzscheibe und die Bildung des Stammes und der Wurzel. Jahrb f wiss Bot 4:101

    Google Scholar 

  • Cebeci O, Kokturk B, Ergen N, Ozturk L, Cakmak I, Budak H (2008) Differential expression of wheat transcriptomes in response to varying cadmium concentrations. Biol Plant 52:703–708

    CAS  Google Scholar 

  • Chandel G, Banerjee S, Vasconcelos M, Grusak MA (2010) Characterization of the root transcriptome for iron and zinc homeostasis-related genes in indica rice (Oryza sativa L). J Plant Biochem Biotechnol 19:145–152

    Google Scholar 

  • Chaoui A, Ghorbal MH, ElFerjani E (1997) Effects of cadmium-zinc interactions on hydroponically grown bean (Phaseolus vulgaris L). Plant Sci 126:21–28

    CAS  Google Scholar 

  • Cheng H, Liu Y, Tam NFY, Wang X, Li SY, Chen GZ, Ye ZH (2010) The role of radial oxygen loss and root anatomy on zinc uptake and tolerance in mangrove seedlings. Environ Pollut 158:1189–1196

    CAS  PubMed  Google Scholar 

  • Cheraghi M, Lorestani B, Khorasani N, Yousefi N, Karami M (2011) Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals. Biol Trace Elem Res 144:1133–1141

    CAS  PubMed  Google Scholar 

  • Choi Y, Harada E, Wada H, Tsuboi Y, Morita T, Kusano SH (2001) Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 21:45–50

    Google Scholar 

  • Ciadamidaro L, Madejón E, Puschenreiter M, Madejón P (2013) Growth of Populus alba and its influence on soil trace element availability. Sci Total Environ 454:337–347

    PubMed  Google Scholar 

  • Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    CAS  PubMed  Google Scholar 

  • Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    CAS  PubMed  Google Scholar 

  • Cocoza C, Minnocci A, Tognetti R, Iori V, Zacchini M, Scarascia Mungozza G (2008) Distribution and concentration of cadmium in root tissue of Populus alba determined by scanning electron microscopy and energy-dispersive x-ray microanalysis. Forest 1:96–103

    Google Scholar 

  • Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 412:765–775

    Google Scholar 

  • Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang JY, Blilou I, Scheres B, Benfey PN (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–425

    CAS  PubMed  Google Scholar 

  • Da Cunha KPV, do Nascimento CWA (2009) Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water Air Soil Pollut 197:323–330

    Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663–667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dalla Vecchia F, La Rocca N, Moro I, De Faveri S, Andreoli C, Rascio N (2005) Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci 168:329–338

    CAS  Google Scholar 

  • Datta S, Kim CM, Pernas M, Pires ND, Proust H, Tam T, Vijayakumar P, Dolan L (2011) Root hairs: development, growth and evolution at the plant–soil interface. Plant Soil 346:1–14

    CAS  Google Scholar 

  • Daud MK, Sun Y, Dawood M, Hayat Y, Variath MT, Wu YX, Raziuddin, Mishkat U, Salahuddin, Najeeb U, Zhu S (2009) Cadmium–induced functional and ultrastructural alternations in roots of two transgenic cotton cultivars. J Hazard Mater 161:463–473

    CAS  PubMed  Google Scholar 

  • Deng H, Ye ZH, Wong MH (2009) Lead, zinc and iron (Fe2+) tolerances in wetland plants and relation to root anatomy and spatial pattern of ROL. Environ Exp Bot 65:353–362

    CAS  Google Scholar 

  • Di Baccio D, Tognetti R, Minnocci A, Sebastiani L (2009) Responses of the Populus × euramericana clone I–214 to excess zinc: carbon assimilation, structural modifications, metal distribution and cellular localization. Environ Exp Bot 67:153–163

    Google Scholar 

  • Di Baccio D, Galla G, Bracci T, Andreucci A, Barcaccia G, Tognetti R, Sebastiani L (2011) Transcriptome analyses of Populus x euramericana clone I-214 leaves exposed to excess zinc. Tree Physiol 31:1293–1308

    PubMed  Google Scholar 

  • Dixit P, Singh S, Vancheeswaran R, Patnala K, Eapen S (2010) Expression of a Neurospora crassa zinc transporter gene in transgenic Nicotiana tabacum enhances plant zinc accumulation without co-transport of cadmium. Plant Cell Environ 33:1697–1707

    CAS  PubMed  Google Scholar 

  • Dolan L, Janmaat K, Willemsen V, Linstead P, Poething S, Roberts K, Scheers B (1993) Cellular organization of the Arabidopsis thaliana root. Development 119:71–84

    CAS  PubMed  Google Scholar 

  • Domínguez E, Heredia-Guerrero JA, Heredia A (2011) The biophysical design of plant cuticles: an overview. New Phytol 189:938–949

    PubMed  Google Scholar 

  • Durand TC, Sergeant K, Planchon S, Carpin S, Label P, Morabito D, Hausman JF, Renaut J (2010) Acute metal stress in Populus tremula x P. alba (717–1B4 genotype): leaf and cambial proteome changes induced by cadmium(2+). Proteomics 10:349–368

    CAS  PubMed  Google Scholar 

  • Ďurčeková K, Huttová J, Mistrík I, Ollé M, Tamás L (2007) Cadmium induces premature xylogenesis in barley roots. Plant Soil 290:61–68

    Google Scholar 

  • Erickson RO (1986) Symplastic growth and symplasmic transport. Plant Physiol 82:1153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Esau K (1965) Plant anatomy, 2nd edn. Wiley, New York/London/Sydney, p 767

    Google Scholar 

  • Evangelou MWH, Conesa HM, Robinson BH, Schulin R (2012) Biomass production on trace element–contaminated land: a review. Environ Eng Sci 29:823–839

    CAS  Google Scholar 

  • Fagioni M, Zolla L (2009) Does the different proteomic profile found in apical and basal leaves of spinach reveal a strategy of this plant toward cadmium pollution response? J Proteome Res 8:2519–2529

    CAS  PubMed  Google Scholar 

  • Fahn A (1990) Plant anatomy. Oxford Pergamon Press, New York, p 580

    Google Scholar 

  • Farinati S, DalCorso G, Bona E, Corbella M, Lampis S, Cecconi D, Polati R, Berta G, Vallini G, Furini A (2009) Proteomic analysis of Arabidopsis halleri shoots in response to the heavy metals cadmium and zinc and rhizosphere microorganisms. Proteomics 9:4837–4850

    CAS  PubMed  Google Scholar 

  • Farinati S, DalCorso G, Varotto S, Furini A (2010) The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol 185:964–978

    CAS  PubMed  Google Scholar 

  • Farinati S, DalCorso G, Panigati M, Furini A (2011) Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation. J Exp Bot 62:3433–3447

    CAS  PubMed  Google Scholar 

  • Frensch J, Hsiao TC, Steudle E (1996) Water and solute transport along developing maize roots. Planta 198:348–355

    Google Scholar 

  • Fu X, Dou C, Chen Y, Chen X, Shi J, Yu M, Xu J (2011) Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. J Hazard Mater 186:103–107

    CAS  PubMed  Google Scholar 

  • Fujimaki SS, Nobuo I, Noriko S, Fujimaki S, Kawachi N, Ito S, Chino M, Nakamura S (2010) Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiol 152:1796–1806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fukao Y, Ferjani A, Fujiwara M, Nishimori Y, Ohtsu I (2009) Identification of zinc-responsive proteins in the roots of Arabidopsis thaliana using a highly improved method of two-dimensional electrophoresis. Plant Cell Physiol 50:2234–2239

    CAS  PubMed  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpiliceuta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unraveling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    CAS  Google Scholar 

  • Garcia JS, Souza GHMF, Eberlin MN, Arruda MAZ (2009) Evaluation of metal-ion stress in sunflower (Helianthus annuus L.) leaves through proteomic changes. Metallomics 1:107–113

    CAS  Google Scholar 

  • Geldner N (2013) The endodermis. Annu Rev Plant Biol 64:531–558

    CAS  PubMed  Google Scholar 

  • Gratão PL, Monteiro CC, Rossi ML, Martinelli AP, Peres LEP, Medici LO, Lea PJ, Azevedo RA (2009) Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium. Environ Exp Bot 67:387–394

    Google Scholar 

  • Grebe M (2011) Unveiling the Casparian strip. Nature 473:294–295

    CAS  PubMed  Google Scholar 

  • Grispen VMJ, Hakvoort HWJ, Bliek T, Verkleij JAC, Schat H (2011) Combined expression of the Arabidopsis metallothionein MT2b and the heavy metal transporting ATPase HMA4 enhances cadmium tolerance and the root to shoot translocation of cadmium and zinc in tobacco. Environ Exp Bot 72:71–76

    CAS  Google Scholar 

  • Gzyl J, Przymusinski R, Gwozdz EA (2009) Ultrastructure analysis of cadmium-tolerant and -sensitive cell lines of cucumber (Cucumis sativus L.). Plant Cell Tissue Organ Cult 99:227–232

    CAS  Google Scholar 

  • Halušková Ľ, Valentovičová K, Huttová J, Mistrík I, Tamás L (2009) Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiol Biochem 47:1069–1074

    PubMed  Google Scholar 

  • Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJM, Whiting SN, May ST, Broadley MR (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170:239–260

    CAS  PubMed  Google Scholar 

  • Han YL, Yuan HY, Huang SZ, Guo Z, Xia B, Gu J (2007) Cadmium tolerance and accumulation by two species of Iris. Ecotoxicology 16:557–563

    CAS  PubMed  Google Scholar 

  • Han SH, Kim DH, Shin SJ (2013) Bioaccumulation and physiological response of five willows to toxic levels of cadmium and zinc. Soil Sediment Contam 22:241–255

    CAS  Google Scholar 

  • Harada E, Kim JA, Meyer AJ, Hell R, Clemens S, Choi YE (2010) Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol 51:1627–1637

    CAS  PubMed  Google Scholar 

  • Hasan SA, Fariduddin Q, Ali B, Hayat S, Ahmad A (2009) Cadmium: toxicity and tolerance in plants. J Environ Biol 30:165–174

    CAS  PubMed  Google Scholar 

  • Hassan Z, Aarts MGM (2011) Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environ Exp Bot 72:53–63

    CAS  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette M–LM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou J–P, Vavasseur A, Leonhardt N (2006) Genome–wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    CAS  PubMed  Google Scholar 

  • Hossain Z, Hajika M, Komatsu S (2012) Comparative proteome analysis of high and low cadmium accumulating soybeans under cadmium stress. Amino Acids 43:2393–2416

    CAS  PubMed  Google Scholar 

  • Hradilova J, Rehulka P, Rehulkova H, Vrbova M, Griga M, Brzobohaty B (2010) Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure. Electrophoresis 31:421–431

    CAS  PubMed  Google Scholar 

  • Hrynkiewicz K, Baum C (2013) Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals. Environ Technol 34:225–230

    CAS  PubMed  Google Scholar 

  • Hu PJ, Qiu RL, Senthilkumar P, Jiang D, Chen ZW, Tang YT, Liu FJ (2009) Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ Exp Bot 66:317–325

    CAS  Google Scholar 

  • Hu PJ, Gan YY, Tang YT, Zhang QF, Jiang D, Yao N, Qiu RL (2012a) Cellular tolerance, accumulation and distribution of cadmium in leaves of hyperaccumulator Picris divaricata. Pedosphere 22:497–507

    CAS  Google Scholar 

  • Hu YT, Ming F, Chen WW, Yan JY, Xu ZY, Li GX, Xu CY, Yang JL, Zheng SJ (2012b) TcOPT3, a member of oligopeptide transporters from the hyperaccumulator Thlaspi caerulescens, is a novel Fe/Zn/Cd/Cu transporter. PLoS One 7:e38535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang HG, Wang K, Zhu ZQ, Li TQ, He ZL, Yang XE, Gupta DK (2013) Moderate phosphorus applications enhances Zn mobility and uptake in hyperaccumulator Sedum alfredii. Environ Sci Pollut Res 20:2844–2853

    CAS  Google Scholar 

  • Huguet S, Bert V, Laboudigue A, Barthès V, Isaure MP, Llorens I, Schat H, Sarret G (2012) Cd speciation and localization in the hyperaccumulator Arabidopsis halleri. Environ Exp Bot 82:54–65

    CAS  Google Scholar 

  • Isaure MP, Fayard B, Saffet G, Pairis S, Bourguignon J (2006) Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochim Acta B Atom Spectrosc 61:1242–1252

    Google Scholar 

  • Ivanova LA, Ronzhina DA, Ivanov LA, Stroukova LV, Peuke AD, Rennenberg H (2011) Over-expression of GSH1 in the cytosol affects the photosynthetic apparatus and improves the performance of transgenic poplars on heavy metal-contaminated soils. Plant Biol 13:649–659

    CAS  PubMed  Google Scholar 

  • Jin XF, Yang XE, Islam E, Liu D, Mahmood Q, Li HLJ (2008) Ultrastructural changes, zinc hyperaccumulation and its relation with antioxidants in two ecotypes of Sedum alfredii Hance. Plant Physiol Biochem 46:997–1006

    CAS  PubMed  Google Scholar 

  • Jones VAS, Dolan L (2012) The evolution of root hairs and rhizoids. Ann Bot 110:205–212

    CAS  PubMed  Google Scholar 

  • Kabała K, Janicka–Russak M, Anklewicz A (2013) Mechanism of Cd and Cu action on the tonoplast proton pumps in cucumber roots. Physiol Plant 147:207–217

    PubMed  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in plants and soils, 3rd edn. Boca Raton, London, New York, Washington D.C. p 331

    Google Scholar 

  • Kashiwagi T, Shindoh K, Hirotsu N, Ishimaru K (2009) Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice. BMC Plant Biol 9:8

    PubMed Central  PubMed  Google Scholar 

  • Katayama H, Banba N, Sugimura Y, Tatsumi M, Kusakari SI, Oyama H, Nakahira A (2013) Subcellular compartmentation of strontium and zinc in mulberry idioblasts in relation to phytoremediation potential. Environ Exp Bot 85:30–35

    CAS  Google Scholar 

  • Kenderešová L, Staňová A, Pavlovkin J, Ďurišová E, Nadubinská M, Čiamporová M, Ovečka M (2012) Early Zn2+ induced effects on membrane potential account for primary heavy metal susceptibility in tolerant and sensitive Arabidopsis species. Ann Bot 110:445–459

    PubMed  Google Scholar 

  • Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium–exposed poplar plants. Proteomics 8:2514–2530

    CAS  PubMed  Google Scholar 

  • Kieffer P, Planchon S, Oufir M, Ziebel J, Dommes J, Hoffmann L, Hausman JF, Renaut J (2009a) Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. J Proteome Res 8:400–417

    CAS  PubMed  Google Scholar 

  • Kieffer P, Schröder P, Dommes J, Hoffmann L, Renaut J, Hausman J–F (2009b) Proteomic and enzymatic response of poplar to cadmium stress. J Proteomics 72:379–396

    CAS  PubMed  Google Scholar 

  • Kim YK, Lee MY (2009a) Proteomic approach for discovery of potential biomarkers for Cd toxicity in rice. Biochip J 3:254–260

    CAS  Google Scholar 

  • Kim YK, Lee MY (2009b) Proteomic analysis of differentially expressed proteins of rice in response to cadmium. J Korean Soc Appl Biol Chem 52:428–436

    CAS  Google Scholar 

  • Kim DY, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140:922–932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Konlechner C, Türktaş M, Langer I, Vaculík M, Wenzel WW, Puschenreiter M, Hauser MT (2013) Expression of zinc and cadmium responsive genes in leaves of willow (Salix caprea L.) genotypes with different accumulation characteristics. Environ Pollut 178:121–127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koo BJ, Chen WP, Chang AC, Page AL, Granato TC, Dowdy RH (2010) A root exudates based approach to assess the long-term phytoavailability of metals in biosolids-amended soils. Environ Pollut 158:2582–2588

    CAS  PubMed  Google Scholar 

  • Kopittke PM, Blamey FPC, Menzies NW (2010) Toxicity of Cd to signal grass (Brachiaria decumbens Stapf.) and Rhodes grass (Chloris gayana Kunth.). Plant Soil 330:515–523

    CAS  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    PubMed  Google Scholar 

  • Küpper H, Aravind P, Leitenmaier B, Trtílek M, Šetlík I (2007) Cadmium–induced inhibition of photosynthesis and long–term acclimation to Cd–stress in the Cd hyperaccumulator Thlaspi caerulescens. New Phytol 175:655–674

    PubMed  Google Scholar 

  • Kuriakose SV, Prasad MNV (2008) Cadmium stress affects germination and seedling growth in Sorghum bicolor (L.) Moench by changing the activities of hydrolyzing enzymes. Plant Growth Regul 54:143–156

    CAS  Google Scholar 

  • Kuthanová A, Fischer L, Nick P, Opatrný Z (2008) Cell cycle phase–specific death response of tobacco BY-2 cell line to cadmium treatment. Plant Cell Environ 31:1634–1643

    PubMed  Google Scholar 

  • Kutschera L, Lichtenegger E (1982) Wurzelatlas mitteleuropäischer Grünlandpflanzen. Band 1 Monocotyledoneae. Gustav Fischer Verlag Stuttgart, New York, p 516

    Google Scholar 

  • Lang ML, Hao MY, Fan QW, Wang W, Mo SJ, Zhao WC, Zhou J (2011) Functional characterization of BjCET3 and BjCET4, two new cation-efflux transporters from Brassica juncea L. J Exp Bot 62:4467–4480

    CAS  PubMed  Google Scholar 

  • Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Kramer U, Barbier-Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051

    CAS  PubMed  Google Scholar 

  • Lanquar V, Ramos MS, Lelievre F, Barbier–Brygoo H, Krieger–Liszkay A, Kramer U, Thomine S (2010) Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiol 152:1986–1999

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee SY, Chung WS (2010) Comparative proteomic analysis of the short–term responses of rice roots and leaves to cadmium. J Plant Physiol 167:161–168

    CAS  PubMed  Google Scholar 

  • Leitenmaier B, Witt A, Witzke A, Stemke A, Meyer–Klaucke W, Kroneck PMH, Küpper H (2011) Biochemical and biophysical characterisation yields insights into the mechanism of a Cd/Zn transporting ATPase purified from the hyperaccumulator plant Thlaspi caerulescens. Biochim Biophys Acta 1808:2591–2599

    CAS  PubMed  Google Scholar 

  • Lin YF, Aarts MGM (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206

    CAS  PubMed  Google Scholar 

  • Lin CY, Trinh NN, Fu SF, Hsiung YC, Chia LC, Lin CW, Huang HJ (2013) Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol Biol 81:507–522

    CAS  PubMed  Google Scholar 

  • Liu CP, Shen ZG, Li XD (2007a) Accumulation and detoxification of cadmium in Brassica pekinensis and B. chinensis. Biol Plant 51:116–120

    CAS  Google Scholar 

  • Liu D, Kottke I, Adam D (2007b) Localization of cadmium in the root cells of Allium cepa by energy dispersive X-ray analysis. Biol Plant 51:363–366

    CAS  Google Scholar 

  • Liu F, Tang Y, Du R, Yang H, Wu Q, Qiu R (2010) Root foraging for zinc and cadmium requirement in the Zn/Cd hyperaccumulator plant Sedum alfredii. Plant Soil 327:365–375

    CAS  Google Scholar 

  • Lozano–Rodríguez E, Hernández LE, Bonay P, Carpena–Ruiz RO (1997) Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J Exp Bot 48:123–128

    Google Scholar 

  • Lu LL, Tian SK, Yang XE, Li TQ, He ZL (2009) Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii. J Plant Physiol 166:579–587

    CAS  PubMed  Google Scholar 

  • Lukačová Z, Švubová R, Kohanová J, Lux A (2013) Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development. Plant Growth Regul 70:89–103

    Google Scholar 

  • Lux A, Luxová M, Morita S, Abe J, Inanaga S (1999) Endodermal silicification in developing seminal roots of lowland and upland cultivars of rice (Oryza sativa L.). Can J Bot 77:955–960

    CAS  Google Scholar 

  • Lux A, Luxová M, Abe J, Morita S (2004a) Root cortex: structural and functional variability and responses to environmental stress. Root Res 13:117–131

    Google Scholar 

  • Lux A, Šottníková A, Opatrná J, Greger M (2004b) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol Plant 120:537–545

    CAS  PubMed  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011a) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    CAS  PubMed  Google Scholar 

  • Lux A, Vaculík M, Martinka M, Lišková D, Kulkarni MG, Stirk WA, Van Staden J (2011b) Cadmium induces hypodermal periderm formation in the roots of the monocotyledonous medicinal plant Merwilla plumbea (Lindl.) Speta. Ann Bot 107:285–292

    CAS  PubMed  Google Scholar 

  • Luxová M (1986) The hydraulic safety zone at the base of barley roots. Planta 169:465–470

    PubMed  Google Scholar 

  • Ma JF, Ueno D, Zhao FJ, McGrath SP (2005) Subcellular localization of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220:731–736

    CAS  PubMed  Google Scholar 

  • Madejón P, Ciadamidaro L, Maranon T, Murillo JM (2013) Long–term biomonitoring of soil contamination using poplar trees: accumulation of trace elements in leaves and fruits. Int J Phytoremediat 15:602–614

    Google Scholar 

  • Madrid L (2010) “Heavy metals”: reminding a long–standing and sometimes forgotten controversy. Geoderma 155:128–129

    Google Scholar 

  • Maistri S, DalCorso G, Vicentini V, Furini A (2011) Cadmium affects the expression of ELF4, a circadian clock gene in Arabidopsis. Environ Exp Bot 72:115–122

    CAS  Google Scholar 

  • Marcon C, Paschold A, Hochholdinger F (2013) Genetic control of root organogenesis in cereals. Methods Mol Biol 959:69–81

    PubMed  Google Scholar 

  • Marmiroli M, Pietrini F, Maestri E, Zacchini M, Marmiroli N, Massacci A (2011) Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol 31:1319–1334

    CAS  PubMed  Google Scholar 

  • Marschner H, Marschner P (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic, London/Waltham

    Google Scholar 

  • Martinka M, Lux A (2004) Response of roots of three populations of Silene dioica to cadmium treatment. Biologia 59:185–189

    CAS  Google Scholar 

  • Martinka M, Dolan L, Pernas M, Abe J, Lux A (2012) Endodermal cell–cell contact is required for the spatial control of Casparian band development in Arabidopsis thaliana. Ann Bot 110:361–371

    PubMed  Google Scholar 

  • Maruthi Sridhar BB, Diehl SV, Han FX, Monts DL, Su Y (2005) Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea). Environ Exp Bot 54:131–141

    CAS  Google Scholar 

  • McFarlane GR, Burchett MD (2000) Cellular distribution of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh. Aquat Bot 68:45–59

    Google Scholar 

  • McNaught AD, Wilkinson A (1997) Compendium of chemical terminology, IUPAC nomenclature books series. Blackwell Science, Oxford

    Google Scholar 

  • Melchior W, Steudle E (1993) Water transport in onion (Allium cepa L) roots – changes of axial and radial hydraulic conductivities during root development. Plant Physiol 101:1305–1315

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mench M, Schwitzguébel J–P, Schröder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900

    CAS  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Academic, Dordrecht, p 849

    Google Scholar 

  • Migocka M, Papierniak A, Kosatka E, Klobus G (2011) Comparative study of the active cadmium efflux systems operating at the plasma membrane and tonoplast of cucumber root cells. J Exp Bot 62:4903–4916

    CAS  PubMed  Google Scholar 

  • Mills RF, Peaston KA, Runions J, Williams LE (2012) HvHMA2, A P-1B-ATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport. PLoS One 7:e42640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh–Nagasawa N, Watanabe A, Fujimura T, Akagi H (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190–199

    CAS  PubMed  Google Scholar 

  • Mleczek M, Rytkowski P, Rissmann I, Kaczmarek Z, Golinski P, Szentner K, Strazyńska K, Stachoviak A (2010) Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenerg 34:1410–1418

    CAS  Google Scholar 

  • Molins H, Michelet L, Lanquar V, Agorio A, Giraudat J, Roach T, Krieger–Liszkay A, Thomine S (2013) Mutants impaired in vacuolar metal mobilization identify chloroplasts as a target for cadmium hypersensitivity in Arabidopsis thaliana. Plant Cell Environ 36:804–817

    CAS  PubMed  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P-1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nehnevajova E, Herzig R, Federer G, Erismann KH, Schwitzguebel JP (2005) Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis. Int J Phytoremediat 7:337–349

    CAS  Google Scholar 

  • Nocito FF, Lancilli C, Dendena B, Lucchini G, Sacchi GA (2011) Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant Cell Environ 34:994–1008

    CAS  PubMed  Google Scholar 

  • Oomen RJFJ, Wu J, Lelièvre F, Blanchet S, Richaud P, Barbier–Brygoo H, Aarts MGM, Thomine S (2009) Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol 181:637–650

    CAS  PubMed  Google Scholar 

  • Papoyan A, Pineros M, Kochian LV (2007) Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. New Phytol 175:51–58

    CAS  PubMed  Google Scholar 

  • Pearson RG (1968) Hard and soft acids and bases. Part I. Fundamental principles. J Chem Edu 45:581–587

    CAS  Google Scholar 

  • Perumala CJ, Peterson CA, Enstone DE (1990) A survey of angiosperm species to detect hypodermal Casparian bands. I. Roots with a uniseriate hypodermis and epidermis. Bot J Linnean Soc 103:93–112

    Google Scholar 

  • Peterson CA, Perumalla CJ (1990) A survey of angiosperm species to detect hypodermal Casparian bands. II. Roots with a multiseriate hypodermis or epidermis. Bot J Linnean Soc 103:113–125

    Google Scholar 

  • Peterson CA, Murrmann M, Steudle E (1993) Location of the major barriers to water and ion movement in young roots of Zea mays L. Planta 190:127–136

    CAS  Google Scholar 

  • Pielichowska M, Wierzbicka M (2004) Uptake and localization of cadmium by Biscutella laevigata, a cadmium hyperaccumulator. Acta Biol Crac Ser Bot 46:57–63

    Google Scholar 

  • Pineros MA, Shaff JE, Kochian V (1998) Development, characterization, and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of Thlaspi species and wheat. Plant Physiol 116:1393–1401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pittman JK, Hirschi KD (2003) Don’t shoot the (second) messenger: endomembrane transporters and binding proteins modulate cytosolic Ca2+ levels. Curr Opin Plant Biol 6:257–262

    CAS  PubMed  Google Scholar 

  • Pos V, Hunyadi–Gulyas E, Caiazzo R, Jocsak I, Medzihradszky KF, Lukacs N (2011) Induction of pathogenesis-related proteins in intercellular fluid by cadmium stress in barley (Hordeum vulgare L.) – a proteomic analysis. Acta Aliment 40:164–175

    CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    CAS  PubMed  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Jansen MAK (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32:158–169

    PubMed  Google Scholar 

  • Prasad MNV, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158:18–23

    CAS  PubMed  Google Scholar 

  • Probst A, Liu H, Fanjul M, Liao B, Holland E (2009) Response of Vicia faba L. to metal toxicity on mine tailing substrate: geochemical and morphological changes in leaf and root. Environ Exp Bot 66:297–308

    CAS  Google Scholar 

  • Ranathunge K, Steudle E, Lafitte R (2005) A new precipitation technique provides evidence for the permeability of Casparian bands to ions in young roots of corn (Zea mays L.) and rice (Oryza sativa L.). Plant Cell Environ 28:1450–1462

    CAS  Google Scholar 

  • Ranathunge K, Schreiber L, Franke R (2011) Suberin research in the genomics era – new interest for an old polymer. Plant Sci 180:399–413

    CAS  PubMed  Google Scholar 

  • Rascio N, Navari–Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    CAS  PubMed  Google Scholar 

  • Rasouli–Sadaghiani M M, Sadeghzadeh B, Sepehr E, Rengel Z (2011) Root exudation and zinc uptake by barley genotypes differing in Zn efficiency. J Plant Nutr 34:1120–1132

    Google Scholar 

  • Redjala T, Sterckeman T, Morel JL (2009) Cadmium uptake by roots: contribution of apoplast and of high– and low–affinity membrane transport systems. Environ Exp Bot 67:235–242

    CAS  Google Scholar 

  • Redjala T, Zelko I, Sterckeman T, Legué V, Lux A (2011) Relationship between root structure and root cadmium uptake in maize. Environ Exp Bot 71:241–248

    CAS  Google Scholar 

  • Remans T, Thijs S, Truyens S, Weyens N, Schellingen K, Keunen E, Gielen H, Cuypers A, Vangronsveld J (2012) Understanding the development of roots exposed to contaminants and the potential of plant–associated bacteria for optimization of growth. Ann Bot 110:239–252

    CAS  PubMed  Google Scholar 

  • Rigola D, Fiers M, Vurro E, Aarts MGM (2006) The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species–specific genes, as identified by comparative expressed sequence tag analysis. New Phytol 170:753–766

    CAS  PubMed  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Rodríguez-Serrano M, Gómez M, del Río LA, Sandalio LM (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol 164:1346–1357

    CAS  PubMed  Google Scholar 

  • Roppolo D, De Rybel B, Tendon VD, Pfister A, Alassimone J, Vermeer JEM, Yamazaki M, Stierhof YD, Beeckman T, Geldner N (2011) A novel protein family mediates Casparian strip formation in the endodermis. Nature 473:380–383

    CAS  PubMed  Google Scholar 

  • Roth U, von Roepenack–Lahaye E, Clemens S (2006) Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J Exp Bot 57:4003–4013

    CAS  PubMed  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    CAS  PubMed  Google Scholar 

  • Sangster AG, Parry DW (1976) Endodermal silicon deposits and their linear distribution in developing roots of Sorghum bicolor (L.) Moench. Ann Bot 40:361–371

    Google Scholar 

  • Sanità di Toppi L, Gabrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Google Scholar 

  • Sarret G, Harada E, Choi YE, Isaure MP, Geoffroy N, Fakra S, Marcus MA, Birschwilks M, Clemens S, Manceau A (2006) Trichomes of tobacco excrete zinc as Zn-substituted calcium carbonate and other Zn-containing compounds. Plant Physiol 141:1021–1034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198

    CAS  PubMed  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Satoh–Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H (2012) Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53:213–224

    PubMed  Google Scholar 

  • Schneider T, Haag-Kerwer A, Maetz M, Niecke M, Povh B, Rausch T, Schüssler A (1999) Micro-PIXE studies of elemental distribution in Cd-accumulating Brassica juncea L. Nucl Instrum Meth B 158:329–334

    CAS  Google Scholar 

  • Schneider T, Persson DP, Husted S, Schellenberg M, Gehrig P, Lee Y, Martinoia E, Schjoerring JK, Meyer S (2013) A proteomics approach to investigate the process of Zn hyperaccumulation in Noccaea caerulescens (J & C. Presl) F.K. Meyer. Plant J 73:131–142

    CAS  Google Scholar 

  • Schreiber L (2010) Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci 15:546–553

    CAS  PubMed  Google Scholar 

  • Schreiber L, Hartmann K, Skrabs M, Zeier J (1999) Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J Exp Bot 50:1267–1280

    CAS  Google Scholar 

  • Schwartz C, Morel JL, Saumier S, Whiting SN, Baker AJM (1999) Root development of the Zinc-hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localization in soil. Plant Soil 208:103–115

    CAS  Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48:523–544

    CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2008) Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel and strontium. Russ J Plant Physiol 55:1–22

    CAS  Google Scholar 

  • Seregin IV, Shpigun LK, Ivanov VB (2004) Distribution and toxic effects of cadmium and lead on maize roots. Russ J Plant Physiol 51:525–533

    CAS  Google Scholar 

  • Shanmugaraj BM, Chandra HM, Srinivasan B, Ramalingam S (2013) Cadmium induced physio-biochemical and molecular response in Brassica juncea. Int J Phytoremediat 15:206–218

    CAS  Google Scholar 

  • Sharma A, Patni B, Shankhdhar D, Shankhdhar SC (2013) Zinc – an indispensable micronutrient. Physiol Mol Biol Plants 19:11–20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi X, Zhang C, Wang H, Zhang F (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272:53–60

    CAS  Google Scholar 

  • Shi GR, Cai QS, Liu CF, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul 61:45–52

    CAS  Google Scholar 

  • Sinclair SA, Kramer U (2012) The zinc homeostasis network of land plants. Biochim Biophys Acta Mol Cell Res 1823:1553–1567

    CAS  Google Scholar 

  • Singh BR, Gupta SK, Azaizeh H, Shilev S, Sudre D, Song WY, Martinoia E, Mench M (2011) Safety of food crops on land contaminated with trace elements. J Sci Food Agric 91:1349–1366

    CAS  PubMed  Google Scholar 

  • Soukup A, Armstrong W, Schreiber L, Franke R, Votrubová O (2007) Apoplastic barriers to radial oxygen loss (ROL) and solute penetration: a chemical and functional comparison of the exodermis of two wetland species – Phragmites australis and Glyceria maxima. New Phytol 173:264–278

    CAS  PubMed  Google Scholar 

  • Stefanic PP, Sikic S, Cvjetko P, Balen B (2012) Cadmium and zinc induced similar changes in protein and glycoprotein patterns in tobacco (Nicotiana tabacum L.) seedlings and plants. Arh Hig Rada Toksikol 63:321–335

    CAS  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Steudle E, Murrmann M, Peterson CA (1993) Transport of water and solutes across maize roots modified by puncturing the endodermis – further evidence for the composite transport model of the root. Plant Physiol 103:335–349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stoláriková M, Vaculík M, Lux A, Di Baccio D, Minnocci A, Andreucci A, Sebastiani L (2012) Anatomical differences of poplar (Populus × euramericana clone I-214) roots exposed to zinc excess. Biologia 67:483–489

    Google Scholar 

  • Sun J, Wang R, Liu Z, Ding Y, Li T (2013) Non–invasive microelectrode cadmium flux measurements reveal the spatial characteristics and real-time kinetics of cadmium transport in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii. J Plant Physiol 170:355–359

    CAS  PubMed  Google Scholar 

  • Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62:4843–4850

    CAS  PubMed  Google Scholar 

  • Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ 35:1948–1957

    CAS  PubMed  Google Scholar 

  • Tamas L, Mistrik I, Huttova J, Haluskova L, Valentovicova K, Zelinova V (2010) Role of reactive oxygen species-generating enzymes and hydrogen peroxide during cadmium, mercury and osmotic stresses in barley root tip. Planta 231:221–231

    CAS  PubMed  Google Scholar 

  • Thomine S, Lelièvre F, Debarbieux E, Schroeder JI, Barbier–Brygoo H (2003) AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J 34:685–695

    CAS  PubMed  Google Scholar 

  • Tian SK, Lu LL, Yang XE, Labavitch JM, Huang YY, Brown P (2009) Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii. New Phytol 182:116–126

    CAS  PubMed  Google Scholar 

  • Todeschini V, Lingua G, D’Agostino G, Carniato F, Roccotiello E, Berta G (2011) Effects of high zinc concentration on poplar leaves: a morphological and biochemical study. Environ Exp Bot 71:50–56

    CAS  Google Scholar 

  • Ueno D, Iwashita T, Zhao FJ, Ma JF (2008) Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd–hyperaccumulator Arabidopsis halleri. Plant Cell Physiol 49:540–548

    CAS  PubMed  Google Scholar 

  • Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, Zambrano MC, Kaskie M, Ebbs S, Kochian LV, Ma JF (2011) Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Plant J 66:852–862

    CAS  PubMed  Google Scholar 

  • Uraguchi S, Fujiwara T (2013) Rice breaks ground for cadmium-free cereals. Curr Opin Plant Biol 16:328–334

    CAS  PubMed  Google Scholar 

  • Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60:2677–2688

    CAS  PubMed  Google Scholar 

  • Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci USA 108:20959–20964

    CAS  PubMed  Google Scholar 

  • Vaculík M, Lux A, Luxová M, Tanimoto E, Lichtscheidl I (2009) Silicon mitigates cadmium inhibitory effects in young maize plants. Environ Exp Bot 67:52–58

    Google Scholar 

  • Vaculík M, Konlechner C, Langer I, Adlassnig W, Puschenreiter M, Lux A, Hauser MT (2012a) Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environ Pollut 163:117–126

    PubMed Central  PubMed  Google Scholar 

  • Vaculík M, Landberg T, Greger M, Luxová M, Stoláriková M, Lux A (2012b) Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Ann Bot 110:433–443

    PubMed  Google Scholar 

  • Van Belleghem F, Cuypers A, Semane B, Smeets K, Vangronsveld J, d’Haen J, Valcke R (2007) Subcellular localization of cadmium in roots and leaves of Arabidopsis thaliana. New Phytol 173:495–508

    PubMed  Google Scholar 

  • Van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J, Mur LA, Petersen M, Smertenko A, Taliansky M, Van Breusegem F, Wolpert T, Woltering E, Zhivotovsky B, Bozhkov PV (2011) Morphological classification of plant cell deaths. Cell Death Differ 18:1241–1246

    PubMed  Google Scholar 

  • Van Fleet DS (1961) Histochemistry and function of the endodermis. Bot Rev 27:165–220

    Google Scholar 

  • Vatehová Z, Kollárová K, Zelko I, Richterová-Kučerová D, Bujdoš M, Lišková D (2012) Interaction of silicon and cadmium in Brassica juncea and Brassica napus. Biologia 67:498–504

    Google Scholar 

  • Vázquez MD, Poschenrieder C, Barceló J (1992) Ultrastructural effects and localization of low cadmium concentrations in bean roots. New Phytol 120:215–226

    Google Scholar 

  • Vazquez S, Fernandez-Pascual M, Sanchez-Pardo B, Carpena RO, Zornoza P (2007) Subcellular compartmentalisation of cadmium in white lupins determined by energy-dispersive X-ray microanalysis. J Plant Physiol 164:1235–1238

    CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    CAS  PubMed  Google Scholar 

  • Verkleij JAC, Golan-Goldhirsh A, Antosiewicz DM, Schwitzguébel JP, Schröder P (2009) Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environ Exp Bot 67:10–22

    CAS  Google Scholar 

  • Vitória AP, Rodriguez APM, Cunha M, Lea PJ, Azevedo RA (2003) Structural changes in radish seedlings exposed to cadmium. Biol Plant 47:561–568

    Google Scholar 

  • Vogel–Mikuš K, Simčič J, Pelicon P, Budnar M, Kump P, Nečemer M, Mesjasz–Przybylowicz J, Przybylowicz WJ, Regvar M (2008) Comparison of essential and non-essential elements distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Plant Cell Environ 31:1484–1496

    PubMed  Google Scholar 

  • Von Guttenberg H (1968) Der primäre Bau der Angiospermenwurzel VIII/5. In: Linsbauer K (ed) Handbuch der Pflanzenanatomie. Gebrüder Bornträger Verlagsbuchhandlung, Berlin–Stuttgart

    Google Scholar 

  • Wang Y, Hu H, Xu Y, Li XX, Zhang HJ (2011a) Differential proteomic analysis of cadmium-responsive proteins in wheat leaves. Biol Plant 55:586–590

    CAS  Google Scholar 

  • Wang Y, Qian YR, Hu H, Xu Y, Zhang HJ (2011b) Comparative proteomic analysis of Cd-responsive proteins in wheat roots. Acta Physiol Plant 33:349–357

    CAS  Google Scholar 

  • Wang YX, Specht A, Horst WJ (2011c) Stable isotope labelling and zinc distribution in grains studied by laser ablation ICP-MS in an ear culture system reveals zinc transport barriers during grain filling in wheat. New Phytol 189:428–437

    CAS  PubMed  Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963

    CAS  PubMed  Google Scholar 

  • Wei W, Chai TY, Zhang YX, Han L, Xu J, Guan ZQ (2009) The Thlaspi caerulescens NRAMP homologue TcNRAMP3 is capable of divalent cation transport. Mol Biotechnol 41:15–21

    CAS  PubMed  Google Scholar 

  • Weigel HJ, Jäger HJ (1980) Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiol 65:480–482

    CAS  PubMed Central  PubMed  Google Scholar 

  • White PJ (2001) The pathways of calcium movement to the xylem. J Exp Bot 52:891–899

    CAS  PubMed  Google Scholar 

  • White PJ, Whiting SN, Baker AJM, Broadley MR (2002) Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescens? New Phytol 153:201–207

    CAS  Google Scholar 

  • Wierzbicka MH, Przedpelska E, Ruzik R, Querdane L, Polec-Pawlak K, Jarosz M, Szpunar J, Szakiel A (2007) Comparison of the toxicity and distribution of cadmium and lead in plant cells. Protoplasma 231:99–111

    CAS  PubMed  Google Scholar 

  • Wojas S, Hennig J, Plaza S, Geisler M, Siemianowski O, Skłodowska A, Ruszczyńska A, Bulska E, Antosiewicz DM (2009) Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation. Environ Pollut 157:2781–2789

    CAS  PubMed  Google Scholar 

  • Wójcik M, Tukiendorf A (2005) Cadmium uptake, localization and detoxification in Zea mays. Biol Plant 49:237–245

    Google Scholar 

  • Wong CKE, Cobbett CS (2009) HMA P–type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181:71–78

    CAS  PubMed  Google Scholar 

  • Wu Q, Shigaki T, Williams KA, Han JS, Kim CK, Hirschi KD, Park S (2011) Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation. J Plant Physiol 168:167–173

    CAS  PubMed  Google Scholar 

  • Wu LQ, Ge Q, Zhang JQ, Zhou JJ, Xu J (2013) Proteomic analysis of Cd-responsive proteins in Solanum torvum. Plant Mol Biol Rep 31:485–491

    CAS  Google Scholar 

  • Xu J, Chai TY, Zhang YX, Lang ML, Han L (2009) The cation-efflux transporter BjCET2 mediates zinc and cadmium accumulation in Brassica juncea L. leaves. Plant Cell Rep 28:1235–1242

    CAS  PubMed  Google Scholar 

  • Xu J, Sun J, Du L, Liu X (2012) Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum. New Phytol 196:110–124

    CAS  PubMed  Google Scholar 

  • Yamaguchi H, Fukuoka H, Arao T, Ohyama A, Nunome T, Miyatake K, Negoro S (2010) Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum torvum. J Exp Bot 61:423–437

    CAS  PubMed  Google Scholar 

  • Yamaguchi N, Mori S, Baba K, Kaburagi-Yada S, Arao T, Kitajima N, Hokura A, Terada Y (2011) Cadmium distribution in the root tissues of solanaceous plants with contrasting root-to-shoot Cd translocation efficiencies. Environ Exp Bot 71:198–206

    CAS  Google Scholar 

  • Ye J, Yan C, Liu J, Lu H, Liu T, Song Z (2012) Effects of silicon on the distribution of cadmium compartmentation in root tips of Kandelia obovata (S., L.) Yong. Environ Pollut 162:369–373

    CAS  PubMed  Google Scholar 

  • Yuan LY, Yang SG, Liu BX, Zhang M, Wu KQ (2012) Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep 31:67–79

    PubMed  Google Scholar 

  • Zelko I, Lux A (2004) Effect of cadmium on Karwinskia humboldtiana roots. Biologia 59:205–209

    CAS  Google Scholar 

  • Zeng XW, Qiu RL, Ying RR, Tang YT, Tang L, Fang XH (2011) The differentially-expressed proteome in Zn/Cd hyperaccumulator Arabis paniculata Franch. In response to Zn and Cd. Chemosphere 82:321–328

    CAS  PubMed  Google Scholar 

  • Zhang M, Liu X, Yuan L, Wu K, Duan J, Wang X, Yang L (2012a) Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization. Plant Physiol Biochem 50:79–86

    CAS  PubMed  Google Scholar 

  • Zhang X, Lin L, Chen M, Zhu Z, Yang W, Chen B, Yang X, An Q (2012b) A non–pathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance. J Hazard Mater 229–230:361–370

    PubMed  Google Scholar 

  • Zhang X, Lin L, Zhu ZQ, Yang XE, Wang YY, An QL (2013) Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii. Int J Phytoremediat 15:51–64

    Google Scholar 

  • Zhao FJ, McGrath S (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380

    CAS  PubMed  Google Scholar 

  • Zhao FJ, Lombi E, Breedon T, McGrath SP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23:507–514

    CAS  Google Scholar 

  • Zhao FJ, Hamon RE, McLaughlin MJ (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol 151:613–620

    CAS  Google Scholar 

  • Zhao C–R, Sawaki Y, Sakurai N, Shibata D, Koyama H (2010) Transcriptomic profiling of major carbon and amino acid metabolism in the roots of Arabidopsis thaliana treated with various rhizotoxic ions. Soil Sci Plant Nut 56:150–162

    CAS  Google Scholar 

  • Zhao L, Sun YL, Cui SX, Chen M, Yang HM, Liu HM, Chai TY, Huang F (2011) Cd-induced changes in leaf proteome of the hyperaccumulator plant Phytolacca americana. Chemosphere 85:56–66

    CAS  PubMed  Google Scholar 

  • Zhou YQ, Huang SZ, Yu SL, Gu JG, Zhao JZ, Han YL, Fu JJ (2010) The physiological response and sub–cellular localization of lead and cadmium in Iris pseudacorus L. Ecotoxicology 19:69–76

    CAS  PubMed  Google Scholar 

  • Zimmermann HM, Steudle E (1998) Apoplastic transport across young maize roots: effect of the exodermis. Planta 206:7–19

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Slovak Research and Development Agency under contract No. APVV-0140-10, APVV SK-FR-0020-11, APVV SK-CN-0016-12, and the Slovak Grant Agency VEGA No. 1/0817/12, and is part of the COST FA 0905 Action. This publication is the result of the project implementation: Comenius University in Bratislava Science Park, 26240220086 supported by the Research and Development Operational Programme funded by the ERDF. The authors are grateful to Mgr. Boris Bokor for the help with preparation of Fig. 1. Figure 3 is the result of collaboration with Prof. Maria Greger, Stockholm University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Lux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martinka, M., Vaculík, M., Lux, A. (2014). Plant Cell Responses to Cadmium and Zinc. In: Nick, P., Opatrny, Z. (eds) Applied Plant Cell Biology. Plant Cell Monographs, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41787-0_7

Download citation

Publish with us

Policies and ethics