Skip to main content

Auxin Biology: Applications and the Mechanisms Behind

  • Chapter
  • First Online:
Applied Plant Cell Biology

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 22))

Abstract

This chapter describes the state of the contemporary knowledge of auxin action reflected in its applications in agriculture and biotechnology. We summarise the current understanding of the mechanism of action for endogenous and major synthetic auxins highlighting their morphogenic character that modulates numerous aspects of plant development. Various auxins and auxin-like compounds are used in techniques of plant vegetative propagation, in vitro culture and regeneration, and they play also a role as important herbicides. We discuss potential applications of auxins in commercially relevant procedures used in the context of plant generative and fruit development, abscission, apical dominance and tropisms. These technologies are based rather on the phenomenology of auxin applications, and the molecular mechanisms behind are still not fully uncovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atta R, Laurens L, Boucheron-Dubuisson E et al (2009) Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J Cell Mol Biol 57:626–644

    CAS  Google Scholar 

  • Baker DA (2000) Vascular transport of auxins and cytokinins in Ricinus. Plant Growth Regul 32:157–160

    CAS  Google Scholar 

  • Balla J, Kalousek P, Reinöhl V et al (2011) Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J65:571–577

    Google Scholar 

  • Bangerth F (2000) Abscission and thinning of young fruit and their regulation by plant hormones and bioregulators. Plant Growth Regul 31:43–59

    CAS  Google Scholar 

  • Barbez E, Kubeš M, Rolčík J et al (2012) A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485:119–122

    CAS  PubMed  Google Scholar 

  • Barlow PW (1994) The origin, diversity and biology of shoot-borne roots. In: Davies TD, Haissig BE (eds) Biology of adventitious root. Plenum, New York

    Google Scholar 

  • Benková E, Michniewicz M, Sauer M et al (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    PubMed  Google Scholar 

  • Bennett MJ, Marchant A, Green HG et al (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950

    CAS  PubMed  Google Scholar 

  • Berleth T, Mattsson J, Hardtke CS (2000) Vascular continuity and auxin signals. Trends Plant Sci 5:387–393

    CAS  PubMed  Google Scholar 

  • Bhalerao RP, Bennett MJ (2003) The case for morphogens in plants. Nat Cell Biol 5:939–944

    CAS  PubMed  Google Scholar 

  • Bielach A, Duclercq J, Marhavý P, Benková E (2012) Genetic approach towards the identification of auxin-cytokinin crosstalk components involved in root development. Philos Trans R Soc Lond Ser B 367:1469–1478

    CAS  Google Scholar 

  • Bishopp A, Benková E, Helariutta Y (2011) Sending mixed messages: auxin-cytokinin crosstalk in roots. Curr Opin Plant Biol 14:10–16

    CAS  PubMed  Google Scholar 

  • Blakesley D, Weston GD, Hall JF (1991) The role of endogenous auxin in root initiation. Plant Growth Regul 10:341–353

    CAS  Google Scholar 

  • Blazkova A, Sotta B, Tranvan H et al (1997) Auxin metabolism and rooting in young and mature clones of Sequoia sempervirens. Physiol Plant 99:73–80

    CAS  Google Scholar 

  • Bojarczuk T, Jankiewicz LS (1975) Influence of phenolic substances on rooting of softwood cuttings of Populus alba L., and P. canescens Sm. Acta Agrobot 28:121–129

    CAS  Google Scholar 

  • Botton A, Eccher G, Forcato C et al (2011) Signaling pathways mediating the induction of apple fruitlet abscission. Plant Physiol 155:185–208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buechel S, Leibfried A, To JPC et al (2010) Role of A-type ARABIDOPSIS RESPONSE REGULATORS in meristem maintenance and regeneration. Eur J Cell Biol 89:279–284

    CAS  PubMed  Google Scholar 

  • Burg SP, Burg EA (1966) The interaction between auxin and ethylene and its role in plant growth. Proc Natl Acad Sci U S A 55:262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calderón Villalobos LIA, Lee S, De Oliveira C et al (2012) A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 8:477–485

    PubMed  Google Scholar 

  • Campanoni P, Nick P (2005) Auxin-dependent cell division and cell elongation. 1-Naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. Plant Physiol 137:939–948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chriqui D (2008) Devel Biol. In: Edwin GF, Hall MA, De Klerk G (eds) Plant propagation by tissue culture: the background. Springer, London

    Google Scholar 

  • Cobb A, Reade J (2010) Herbicides & plant physiology, 2nd edn. Wiley-Blackwell, Oxford, p 296

    Google Scholar 

  • Correa LR, Stein RJ, Fett-Neto AG (2012) Adventitious rooting of detached Arabidopsis thaliana leaves. Biol Plantarun 56:25–30

    CAS  Google Scholar 

  • Dal Bosco C, Dovzhenko A, Liu X et al (2012) The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. Plant J Cell Mol Biol 71:860–870

    CAS  Google Scholar 

  • Darwin C, Darwin F (1881) The power of movement in plants. D. Appleton and Company, New York

    Google Scholar 

  • Davies P (2004) Plant hormones – biosynthesis, signal transduction, action! 3rd edn. Kluwer, Dordrecht, p 802

    Google Scholar 

  • De Klerk G, Van Der Krieken W, De Jong JC (1999) Review the formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev Biol Plant 35:189–199

    Google Scholar 

  • Delbarre A, Muller P, Imhoff V, Guern J (1996) Planta and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198:532–541

    CAS  Google Scholar 

  • Dello_Ioio R, Nakamura K, Moubayidin L et al (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380–1384

    CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D et al (2005b) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119

    CAS  PubMed  Google Scholar 

  • Diaz-Sala C, Hutchison KW, Goldfarb B, Greenwood MS (1996) Maturation-related loss in rooting competence by loblolly pine stem cuttings: the role of auxin transport, metabolism and tissue sensitivity. Physiol Plant 97:481–490

    CAS  Google Scholar 

  • Ding Z, Wang B, Moreno I et al (2012) ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat Commun 3:941

    PubMed  Google Scholar 

  • Dnyansagar VR, Khosla SN (1969) Effect of 2,4-D sprays on the anatomical characters of some weeds. Proc Natl Acad Sci India B70:287–294

    Google Scholar 

  • Eames A (1950) Destruction of phloem in young bean plants after treatment with 2,4-D. Am J Bot 37:840–847

    CAS  Google Scholar 

  • Ellis CM, Nagpal P, Young JC et al (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574

    CAS  PubMed  Google Scholar 

  • Estornell LH, Agustí J, Merelo P et al (2013) Elucidating mechanisms underlying organ abscission. Plant Sci 199–200:48–60

    PubMed  Google Scholar 

  • Ficcadenti N, Sestili S, Pandolfini T (1999) Genetic engineering of parthenocarpic fruit development in tomato. Mol Breed 5:463–470

    Google Scholar 

  • Finet C, Jaillais Y (2012) Auxology: when auxin meets plant evo-devo. Dev Biol 369:19–31

    CAS  PubMed  Google Scholar 

  • Ford Y-Y, Bonham EC, Cameron RWF et al (2002) Adventitious rooting: examining the role of auxin in an easy-and a difficult-to-root plant. Plant Growth Regul 36:149–159

    CAS  Google Scholar 

  • Friml J (2003) Auxin transport – shaping the plant. Curr Opin Plant Biol 6:7–12

    Google Scholar 

  • Friml J, Wiśniewska J, Benková E et al (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    PubMed  Google Scholar 

  • Gaj MD (2011) Somatic embryogenesis and plant regeneration in the culture of Arabidopsis thaliana (L.) Heynh. immature zygotic embryos. Methods Mol Biol 710:257–265

    CAS  PubMed  Google Scholar 

  • Gälweiler L, Guan C, Müller A et al (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    PubMed  Google Scholar 

  • Gautheret RJ (1939) Sur la possibilité de realiser a culture indefinite de tissues de tubercules de capote. C R Hebd Seances Acad Sci 208:118–120

    Google Scholar 

  • Gautheret RJ (1942) Hétéro-auxineset cultures de tissusvégétaux. Bull Soc Chim Biol 24:13–41

    CAS  Google Scholar 

  • Gautheret RJ (1955) Sur la variabilté des propriétésphysiologiques des cultures de tissues végétaux. Rev Gén Bot 62:5–112

    Google Scholar 

  • Gautheret RJ (1985) History of plant tissue and cell culture: a personal account. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants. Vol 2: Cell growth, nutrition, cytodifferentiation and cryopreservation. Academic, London/New York, pp 1–59

    Google Scholar 

  • Gauvrit C, Gaillardon P (1991) Effect of low temperatures on 2,4-D behaviour in maize plants. Weed Res 31:135–142

    CAS  Google Scholar 

  • George EF, Sherrington PD (1984) Plant propagation by tissue culture. Handbook and directory of commercial laboratories. Exegetics Ltd, Eversley/Basingstoke/Hants

    Google Scholar 

  • Gilbert FA (1946) The status of plant-growth substances and herbicides in 1945. Chem Rev 39:199–218

    CAS  PubMed  Google Scholar 

  • Gleason C, Foley RC, Singh KB (2011) Mutant analysis in Arabidopsis provides insight into the molecular mode of action of the auxinic herbicide dicamba. PloS one 6:e17245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldschmidt EE, Leshem B (1971) Style abscission in the citron (Citrus medica L.) and other citrus species: morphology, physiology, and chemical control with picloram. Am J Bot 58:14–23

    CAS  Google Scholar 

  • Gordon SP, Heisler MG, Reddy GV et al (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539–3548

    CAS  PubMed  Google Scholar 

  • Grossmann K (2000) Mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends in plant science 5:506–508

    CAS  PubMed  Google Scholar 

  • Grossmann K (2003) Mediation of herbicide effects by hormone interactions. J Plant Growth Regul 22:109–122

    CAS  Google Scholar 

  • Grossmann K (2007) Auxin herbicide action: lifting the veil step by step. Plant Signal Behav 2:421–423

    PubMed Central  PubMed  Google Scholar 

  • Grossmann K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci 66:113–120

    CAS  PubMed  Google Scholar 

  • Grossmann K, Kwiatkowski J (1995) Evidence for a causative role of cyanide, derived from ethylene biosynthesis, in the herbicidal mode of action of quinclorac in barnyard grass. Pestic Biochem Physiol 51:150–160

    CAS  Google Scholar 

  • Grossmann K, Kwiatkowski J (2000) The mechanism of quinclorac selectivity in grasses. Pestic Biochem Physiol 66:83–91

    CAS  Google Scholar 

  • Grossmann K, Scheltrup F, Kwiatkowski J, Caspar G (1996) Induction of abscisic acid is a common effect of auxin herbicides in susceptible plants. J Plant Physiol 149:475–478

    CAS  Google Scholar 

  • Haberlandt G (1902) KulturversuchemitisoliertenPflanzenzellen. SitzungsberAkadWiss Wien Math-Naturwiss Kl Abt J 111:69–92

    Google Scholar 

  • Hamner CL, Tukey HB (1944) The herbicidal action of 2,4Dichlorphenoxyacetic and 2,4,5 Trichloracetic acid on Bindweed. Science 18:154–155

    Google Scholar 

  • Hansen H, Grossmann K (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol 124:1437–1448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hartmann H, Kester D, Davies F (1990) Plant propagation. Principles and practice, 5th edn. Prentice Hall, Englewood Cliffs, p 647

    Google Scholar 

  • Heap I (1997) The occurrence of herbicide-resistant weeds worldwide. Pestic Sci 51:235–243

    CAS  Google Scholar 

  • Hitchcock AE, Zimmerman PW (1936) Effect of the use of growth substances on the rooting response of cuttings. Contrib Boyce Thomps Inst 8:63–79

    CAS  Google Scholar 

  • Hošek P, Kubeš M, Laňková M et al (2012) Auxin transport at cellular level: new insights supported by mathematical modelling. J Exp Bot 63:3815–3827

    PubMed  Google Scholar 

  • Industry Task Force II on 2,4-D Research Data. http://www.24d.org/backgrounders/body.aspx?pageID=30&contentID=136. Accessed 20 Aug 2013

  • Jackson RG, Lim EK, Li Y et al (2001) Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. J Biol Chem 276:4350–4356

    CAS  PubMed  Google Scholar 

  • Jackson RG, Kowalczyk M, Li Y et al (2002) Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterisation of transgenic lines. Plant J 32:573–583

    CAS  PubMed  Google Scholar 

  • Jarvis BC, Shaheed AI (1986) Adventitious root formation in relation to the uptake and distribution of supplied auxin. New Phytol 103:23–31

    CAS  Google Scholar 

  • Joo JH, Yoo HJ, Hwang I et al (2005) Auxin-induced reactive oxygen species production requires the activation of phosphatidylinositol 3-kinase. FEBS Lett 579:1243–1248

    CAS  PubMed  Google Scholar 

  • Jurado S, Abraham Z, Manzano C et al (2010) The Arabidopsis cell cycle F-box protein SKP2A binds to auxin. Plant Cell 22:3891–3904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karcz W, Burdach Z (2002) A comparison of the effects of IAA and 4-Cl-IAA on growth, proton secretion and membrane potential in maize coleoptile segments. J Exp Bot 53:1089–1098

    CAS  PubMed  Google Scholar 

  • Karuppanapandian T, Wang H, Prabakaran N et al (2011) 2,4-dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles. Plant Physiol Biochem 49:168–177

    CAS  PubMed  Google Scholar 

  • Katayama M, Saito T, Kanayama K (2010) 5,6-Dichloroindole-3-acetic acid and 4-chloroindole-3-acetic acid, two potent candidates for new rooting promoters without estrogenic activity. J Pest Sci 35:134–137

    CAS  Google Scholar 

  • Kazan K, Manners JM (2009) Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci 14:373–382

    CAS  PubMed  Google Scholar 

  • Keller CP, Van Volkenburgh E (1997) Auxin-induced epinasty of tobacco leaf tissues (A nonethylene-mediated response). Plant Physiol 113:603–610

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelley K, Riechers D (2007) Recent developments in auxin biology and new opportunities for auxinic herbicide research. Pest Biochem Physiol 89:1–11

    CAS  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    CAS  PubMed  Google Scholar 

  • Kieffer M, Neve J, Kepinski S (2010) Defining auxin response contexts in plant development. Curr Opin Plant Biol 13:12–20

    CAS  PubMed  Google Scholar 

  • Klein AM, Vaissiere BE, Cane JH et al (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc Lond Ser B Biol Sci 274:303–313

    Google Scholar 

  • Koepfli JB, Thimann KV, Went FV (1938) Phytohormones: structure and physiological activity. I. J Biol Chem 122:763–780

    CAS  Google Scholar 

  • Kögl F, Haagen-Smit AJ, Erxleben H (1934) Übereinneues Auxin (“Hetero-auxin”) ausHarn. 11. MitteilungüberpflanzlicheWachstumsstoffe. Hoppe-SeylersZeitschriftfürphysiologischeChemie 228:90–103

    Google Scholar 

  • Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64:2541–2555

    CAS  PubMed  Google Scholar 

  • Kubeš M, Yang H, Richter GL et al (2012) The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. Plant J Cell Mol Biol 69:640–654

    Google Scholar 

  • Kuhlemeier C, Reinhardt D (2001) Auxin and phyllotaxis. Trends Plant Sci 6:187–189

    CAS  PubMed  Google Scholar 

  • Leopold AC (1955) Auxins and plant growth. University of California Press, Berkeley/Los Angeles

    Google Scholar 

  • Leyser O (2011) Auxin, self-organisation, and the colonial nature of plants. Curr Biol 21:R331–337

    CAS  PubMed  Google Scholar 

  • Liu J-H, Reid DM (1992) Auxin and ethylene-stimulated adventitious rooting in relation to tissue 9. J Exp Bot 43:1191–1198

    CAS  Google Scholar 

  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943–950

    CAS  PubMed  Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J Cell Mol Biol 28:465–474

    CAS  Google Scholar 

  • Loach K (1988) Hormone applications and adventitious root formation in cuttings – a critical review. Acta Hort (ISHS) 227:126–133

    Google Scholar 

  • Löbler M, Klämbt D (1985) Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). J Biol Chem 260:9848–9853

    PubMed  Google Scholar 

  • Losada JMM, Herrero M (2013) The influence of the progamic phase for fruiting in the apple tree. Ann Appl Biol 163:82–90

    Google Scholar 

  • Ludwig-Müller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773

    PubMed  Google Scholar 

  • Ludwig-Muller J, Cohen JD (2002) Identification and quantification of three active auxins in different tissues of Tropaeolum majus. Physiol Plant 115:320–329

    CAS  PubMed  Google Scholar 

  • Ludwig-Müller J, Vertocnik A, Town CD (2005) Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J Exp Bot 56:2095–2105

    PubMed  Google Scholar 

  • Marhavý P, Bielach A, Abas L et al (2011) Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev Cell 21:796–804

    PubMed  Google Scholar 

  • Maroto JV, Miguel A, Lopez-Galarza S et al (2005) Parthenocarpic fruit set in triploid watermelon induced by CPPUand 2,4-D applications. Plant Growth Regul 45:209–213

    CAS  Google Scholar 

  • Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development 1. Plant Physiol 131:1327–1339

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCarthy-Suárez I, Gómez M, Del Río L, Palma JM (2011) Organ-specific effects of the auxin herbicide 2,4-D on the oxidative stress and senescence-related parameters of the stems of pea plants. Acta Physiol Plant 33:2239–2247

    Google Scholar 

  • Meins F Jr (1982) Habituation of cultured plant cells. In: Schell J, Kahl G (eds) Molecular biology of plant tumors. Academic, New York, pp 3–31

    Google Scholar 

  • Meins F Jr (1989) Habituation: heritable variation in the requirement of cultured plant cells for hormones. Annu Rev Genet 23:395–408

    CAS  PubMed  Google Scholar 

  • Meir S, Salim S, Chernov Z, Philosoph-Hadas S (2007) Quality improvement of cut flowers and potted plants with postharvest treatments based on various cytokinins and auxins. Acta Hortic 755:143–154

    CAS  Google Scholar 

  • Menges M, Murray JAH (2002) Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J 30:203–212

    CAS  PubMed  Google Scholar 

  • Mithila J, Hall JC (2005) Comparison of ABP1 over-expressing Arabidopsis and under-expressing tobacco with an auxinic herbicide-resistant wild mustard (Brassica kaber) biotype. Plant Sci 169:21–28

    CAS  Google Scholar 

  • Mithila J, Hall J, Johnson W et al (2011) Evolution of resistance to auxinic herbicides: historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci 59:445–457

    CAS  Google Scholar 

  • Monaco T, Steve J, Weller C, Ashton FM (2002) Weed Sci: principles and practices. Wiley-Blackwell, New York

    Google Scholar 

  • Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin-auxin crosstalk. Trends Plant Sci 14:557–562

    CAS  PubMed  Google Scholar 

  • Mounet F, Moing A, Kowalczyk M et al (2012) Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. J Exp Bot 63:4901–4917

    CAS  PubMed  Google Scholar 

  • Mravec J, Skůpa P, Bailly A et al (2009) Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459:1136–1140

    CAS  PubMed  Google Scholar 

  • Müller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097

    PubMed Central  PubMed  Google Scholar 

  • Nagata T, Nemoto Y, Hasezava S (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30

    CAS  Google Scholar 

  • Napier R, Venis M (1990) Monoclonal antibodies detect an auxin-induced conformational change in the maize auxin-binding protein. Planta 182:313–318

    CAS  PubMed  Google Scholar 

  • Nissen SJ, Sutter EG (1990) Stability of IAA and IBA in nutrient medium to several tissue culture procedures. Hort Sci 25:800–802

    CAS  Google Scholar 

  • Nobécourt P (1939) Sur la pérennitéetl’augmentation de volume des cultures de tissues végétaux. C R Seances Soc Biol Ses Fil 130:1270–1271

    Google Scholar 

  • Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13:2441–2454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nordström AC, Eliasson L (1993) Interaction of ethylene with indole-3-acetic acid in regulation of rooting in pea cuttings. Plant Growth Regul 12:83–90

    Google Scholar 

  • Nordström AC, Jacobs FA, Eliasson L (1991) Effect of exogenous indole-3-acetic Acid and indole-3-butyric acid on internal levels of the respective auxins and their conjugation with aspartic acid during adventitious root formation in pea cuttings. Plant Physiol 96:856–861

    PubMed Central  PubMed  Google Scholar 

  • Novák O, Hényková E, Sairanen I et al (2012) Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J Cell Mol Biol 72:523–536

    Google Scholar 

  • Opatrný Z, Opatrná J (1976) The specificity of the effect of 2,4-D and NAA of the growth, micromorphology, and occurrence of starch in long-term Nicotiana tabacum L. cell strains. Biol Plant 18:359–365

    Google Scholar 

  • Pernisová M, Klíma P, Horák J, Válková M, Malbeck J, Souček P, Reichman P, Hoyerová K, Dubová J, Friml J, Zažímalová E, Hejátko J (2009) Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc Natl Acad Sci U S A 106(9):3609–3614

    PubMed Central  PubMed  Google Scholar 

  • Pazmiño D, Romero-Puertas M, Sandalio L (2012) Insights into the toxicity mechanism of and cell response to the herbicide 2,4-D in plants. Plant Signal Behav 7:1–3

    Google Scholar 

  • Peat TS, Böttcher C, Newman J et al (2012) Crystal structure of an indole-3-acetic acid amido synthetase from grapevine involved in auxin homeostasis. Plant Cell 24:4525–4538

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perrot-Rechenmann C (2010) Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol 2:a001446

    PubMed  Google Scholar 

  • Petrášek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688

    PubMed  Google Scholar 

  • Petrášek J, Mravec J, Bouchard R et al (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918

    PubMed  Google Scholar 

  • Pischke MS, Huttlin EL, Hegeman AD, Sussman MR (2006) A transcriptome-based characterization of habituation in plant tissue culture. Plant Physiol 140:1255–1278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porter WL, Thimann KV (1965) Molecular requirements for auxin action – I. Phytochemistry 4:229–243

    CAS  Google Scholar 

  • Preece JE (2003) A century of progress with vegetative plant propagation. Hortic Sci 38:1015–1025

    Google Scholar 

  • Pufky J, Qiu Y, Rao M et al (2003) The auxin-induced transcriptome for etiolated Arabidopsis seedlings using a structure/function approach. Funct Integr Genomics 3:135–143

    CAS  PubMed  Google Scholar 

  • Raghavan V (2004) Role of 2,4-Dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D. Am J Bot 91:1743–1756

    CAS  PubMed  Google Scholar 

  • Raghavan C, Ong EK, Dalling MJ, Stevenson TW (2005) Effect of herbicidal application of 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct Integr Genomics 5:4–17

    CAS  PubMed  Google Scholar 

  • Raghavan C, Ong EK, Dalling MJ, Stevenson TW (2006) Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct Integr Genomics 6:60–70

    CAS  PubMed  Google Scholar 

  • Rahman A, Nakasone A, Chhun T (2006) A small acidic protein 1 (SMAP1) mediates responses of the Arabidopsis root to the synthetic auxin 2, 4-dichlorophenoxyacetic acid. Plant J 47:788–801

    CAS  PubMed  Google Scholar 

  • Rasul M, Mian M, Cho Y et al (2008) Application of plant growth regulators on the parthenocarpic fruit development in Teasle Gourd (Kakrol, Momordica dioica Roxb.). J Fac Agric Kyushu Univ 53:39–42

    CAS  Google Scholar 

  • Reinecke DM (1999) 4-Chloroindole-3-acetic acid and plant growth. Plant Growth Regul 27:3–13

    CAS  Google Scholar 

  • Rosquete MR, Barbez E, Kleine-Vehn J (2012) Cellular auxin homeostasis: gatekeeping is housekeeping. Mol Plant 5:772–786

    PubMed  Google Scholar 

  • Ruan YL, Patrick JW, Bouzayen M et al (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17:656–65

    CAS  PubMed  Google Scholar 

  • Rubery PH, Sheldrake AR (1974) Carrier-mediated auxin transport. Planta 118:101–121

    CAS  PubMed  Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H et al (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472

    CAS  PubMed  Google Scholar 

  • Sachs T (1969) Polarity and the induction of organized vascular tissues. Ann Bot 33:263

    Google Scholar 

  • Sachs T (1991) Cell polarity and tissue patterning in plants. Development 113:83–93

    Google Scholar 

  • Salaš P, Sasková H, Mokričková J, Litschmann T (2012) Evaluation of different types of rooting stimulators. Acta Univ Agric et Silvic Mendel Brun 60:217–228

    Google Scholar 

  • Sauer M, Kleine-Vehn J (2011) AUXIN BINDING PROTEIN1: the outsider. Plant Cell 23:2033–2043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scarpella E, Barkoulas M, Tsiantis M (2010) Control of leaf and vein development by auxin. Cold Spring Har Perspect Biol 2:a001511

    Google Scholar 

  • Scheltrup F, Grossmann K (1995) Abscisic acid is a causative factor in the mode of action of the auxinic herbicide quinmerac in cleaver (Galium aparine L.). J Plant Physiol 147:118–126

    CAS  Google Scholar 

  • Schopfer P, Liszkay A (2006) Plasma membrane-generated reactive oxygen intermediates and their role in cell growth of plants. Biofactors 28:73–81

    CAS  PubMed  Google Scholar 

  • Serrani J, Carrera E, Ruiz-Rivero O et al (2010) Inhibition of auxin transport from the ovary or from the apical shoot induces parthenocarpic fruit-set in tomato mediated by gibberellins. Plant Physiol 153:851–862

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimizu T, Eguchi K, Nishida I, Laukens K, Witters E, van Onckelen H, Nagata T (2006) A novel cell division factor from tobacco 2B-13 cells that induced cell division in auxin-starved tobacco BY-2 cells. Naturwissenschaften 93(6):278–285

    CAS  PubMed  Google Scholar 

  • Sieberer T, Hauser M-T, Seifert GJ, Luschnig C (2003) PROPORZ1, a putative Arabidopsis transcriptional adaptor protein, mediates auxin and cytokinin signals in the control of cell proliferation. Curr Biol 13:837–842

    CAS  PubMed  Google Scholar 

  • Simon S, Petrášek J (2011) Why plants need more than one type of auxin. Plant Sci 180:454–460

    CAS  PubMed  Google Scholar 

  • Simon S, Kubeš M, Baster P et al (2013) Defining selectivity of processes along the auxin response 1368 chain: a study using auxin analogues. New Phytol 200:1034–1048

    Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–130

    CAS  PubMed  Google Scholar 

  • Smith HE (1988) The inheritance of genetic tumors in Nicotiana hybrids. J Hered 79:277–284

    Google Scholar 

  • Staswick PE, Serban B, Rowe M et al (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strader LC, Bartel B (2011) Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Mol Plant 4:477–486

    CAS  PubMed  Google Scholar 

  • Struckmeyer B (1951) Comparative effects of growth substances on stem anatomy. In: Skoog F (ed) Plant growth substances. University of Wisconsin, Wisconsin, pp 167–174

    Google Scholar 

  • Su Y-H, Liu Y-B, Zhang X-S (2011) Auxin-cytokinin interaction regulates meristem development. Mol Plant 4:616–625

    CAS  PubMed  Google Scholar 

  • Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18:463–471

    CAS  PubMed  Google Scholar 

  • Sundberg E, Ostergaard L (2009) Distinct and dynamic auxin activities during reproductive development. Cold Spring Harb Perspect Biol 1:a001628–a001628

    PubMed  Google Scholar 

  • Szmedra P (1997) Banning 2,4-D and the phenoxy herbicides: potential economic impact. Weed Sci 45:592–598

    CAS  Google Scholar 

  • Tagliani L (2011) Dow AgroSciences. Petition for determination of nonregulated status for herbicide tolerant DAS-40278-9 Corn

    Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Taylor IB, Burbidge A, Thompson AJ (2000) Control of abscisic acid synthesis. J Exp Bot 51:1563–1574

    CAS  PubMed  Google Scholar 

  • Tivendale ND, Davidson SE, Davies NW et al (2012) Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid. Plant Physiol 159:1055–1063

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tognetti VB, Van Aken O, Morreel K et al (2010) Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell 22:2660–2679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torrigiani P, Bressanin D, Beatriz Ruiz K et al (2012) Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling. Physiol Plant 146:86–98

    CAS  PubMed  Google Scholar 

  • Trewavas AJ (1982) Growth substance sensitivity: the limiting factor in plant development. Physiol Plant 55:60–72

    CAS  Google Scholar 

  • Valvekens D, Vanmontagu M, Vanlijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis-thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A 85:5536–5540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    CAS  PubMed  Google Scholar 

  • Vanstraelen M, Benková E (2012) Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol 28:463–487

    CAS  PubMed  Google Scholar 

  • Vasil IK (1986) Cell culture and somatic cell genetics of plants. Vol 3: Plant regeneration and genetic variability. Academic, New York

    Google Scholar 

  • Walsh TA, Neal R, Merlo AO et al (2006) Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis. Plant Physiol 142:542–552

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wehtje G (2008) Synergism of dicamba with diflufenzopyr with respect to turfgrass weed control. Weed Technol 22:679–684

    CAS  Google Scholar 

  • Weijers D, Jürgens G (2005) Auxin and embryo axis formation: the ends in sight? Curr Opin Plant Biol 8:32–37

    CAS  PubMed  Google Scholar 

  • Went FW (1928) Wuchsstoff und Wachstum. Rec Trav Bot Neerl 25:1–116

    Google Scholar 

  • Went FW (1934) A test method for rhizocaline, the root forming substance. ProcKonAkadWetenschap Amst 37:445–455

    CAS  Google Scholar 

  • White PR (1934) Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol 9:585–600

    CAS  PubMed Central  PubMed  Google Scholar 

  • White PR (1939) Potentially unlimited growth of excised plant casus in an artificial medium. Am J Bot 26:59–64

    Google Scholar 

  • Wightman F, Lighty DL (1982) Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. Physiol Plant 55:17–24

    CAS  Google Scholar 

  • Woeste KE, Ye C, Kieber JJ (1999) Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol 119:521–530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright T, Shan G, Walsha T et al (2010) Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proc Natl Acad Sci U S A 107:20240–20245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xie RJ, Deng L, Jing L et al (2013) Recent advances in molecular events of fruit abscission. Biol Plant 57:201–209

    CAS  Google Scholar 

  • Yamakawa T, Kurahashi O, Ishida K (1979) Note stability of indole-3-acetic autoclaving, aeration light illumination acid to and of agricultural chemistry. Agric Biol Chem 43:879–880

    CAS  Google Scholar 

  • Yu H, Moss BL, Jang SS et al (2013) Mutations in the TIR1 auxin receptor that increase affinity for auxin/indole-3-acetic acid proteins result in auxin hypersensitivity. Plant Physiol 162:295–303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zažímalová E, Kutáček M (1985) Auxin-binding site in wheat shoots: interactions between indol-3-ylacetic acid and its halogenated derivatives. Biol Plant 27:114–118

    Google Scholar 

  • Zhang Y, Tan J, Guo Z et al (2009) Increased abscisic acid levels in transgenic tobacco over-expressing 9 cis-epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences. Plant Cell Environ 32:509–519

    PubMed  Google Scholar 

  • Zhang M, Zheng X, Song S et al (2011) Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol 29:453–458

    CAS  PubMed  Google Scholar 

  • Zimmerman PW, Wilcoxon F (1935) Several chemical growth substances which cause Initiation of roots and other responses in plants. Contrib Boyce Thomps Inst 7:209–229

    CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge support of the Ministry of Education, Youth and Sport of the Czech Republic (project MSM00216208858) and Charles University in Prague (project SVV 265203/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Skůpa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skůpa, P., Opatrný, Z., Petrášek, J. (2014). Auxin Biology: Applications and the Mechanisms Behind. In: Nick, P., Opatrny, Z. (eds) Applied Plant Cell Biology. Plant Cell Monographs, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41787-0_3

Download citation

Publish with us

Policies and ethics