Skip to main content

Why to Spend Tax Money on Plant Microtubules?

  • Chapter
  • First Online:
Applied Plant Cell Biology

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 22))

Abstract

Plant microtubules have evolved into a versatile tool to link environmental signals into flexible morphogenesis. Cortical microtubules define the axiality of cell expansion by control of cellulose orientation. Plant-specific microtubule structures such as preprophase band and phragmoplast determine symmetry and axiality of cell divisions. In addition, microtubules act as sensors and integrators for stimuli such as mechanic load and gravity but also osmotic stress, cold, and pathogen attack. Many of these functions are specific for plants and involve unique proteins or the recruitment of proteins to new functions. The review aims to ventilate the potential of microtubule-based strategies for biotechnological application by highlighting representative case studies. These include reorientation of cortical microtubules to increase lodging resistance, control of microtubule dynamics to alter the gravity-dependent orientation of leaves, the use of microtubules as sensitive thermometers to improve adaptive cold tolerance of chilling and freezing sensitive plants, the reduction of microtubule treadmilling to inhibit cell-to-cell transport of plant viruses, or the modulation of plant defence genes by pharmacological manipulation of microtubules. The specificity of these responses is controlled by a great variety of specific associated proteins opening a wide field for biotechnological manipulation of plant architecture and stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdrakhamanova A, Wang QY, Khokhlova L, Nick P (2003) Is microtubule assembly a trigger for cold acclimation? Plant Cell Physiol 44:676–686

    CAS  PubMed  Google Scholar 

  • Abe K, Takahashi H, Suge H (1998) Gravimorphism in rice and barley: promotion of leaf elongation by vertical inversion in agravitropically growing plants. J Plant Res 111:523–530

    CAS  PubMed  Google Scholar 

  • Ahad A, Wolf J, Nick P (2003) Activation-tagged tobacco mutants that are tolerant to antimicrotubular herbicides are cross-resistant to chilling stress. Transgenic Res 12:615–629

    CAS  PubMed  Google Scholar 

  • Akashi T, Shibaoka H (1987) Effects of gibberellin on the arrangement and the cold stability of cortical microtubules in epidermal cells of pea internodes. Plant Cell Physiol 28:339–348

    CAS  Google Scholar 

  • Akashi T, Kawasaki S, Shibaoka H (1990) Stabilization of cortical microtubules by the cell wall in cultured tobacco cells. Effect of extensin on the cold stability of cortical microtubules. Planta 182:363–369

    CAS  PubMed  Google Scholar 

  • Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9:309–322

    CAS  PubMed  Google Scholar 

  • Anthony RG, Waldin TR, Ray JA, Bright SWJ, Hussey PJ (1998) Herbicide resistance caused by spontaneous mutation of the cytoskeletal protein tubulin. Nature 393:260–263

    CAS  PubMed  Google Scholar 

  • Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu J, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikaria M, Matsuoka M (2011) Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci USA 108:11034–11039

    CAS  PubMed  Google Scholar 

  • Atkin RK, Barton GE, Robinson DK (1973) Effect of root-growing temperature on growth substance in xylem exudate of Zea mays. J Exp Bot 24:475–487

    Google Scholar 

  • Bartolo ME, Carter JV (1991a) Microtubules in the mesophyll cells of nonacclimated and cold-acclimated spinach. Plant Physiol 97:175–181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartolo ME, Carter JV (1991b) Effect of microtubule stabilization on the freezing tolerance of mesophyll cells of spinach. Plant Physiol 97:182–187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bichet A, Desnos T, Turner S, Grandjean O, Höfte H (2001) BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant J 25:137–148

    CAS  PubMed  Google Scholar 

  • Bisgrove SR, Lee YRJ, Liu B, Peters NT, Kropf DL (2008) The microtubule plus-end binding protein EB1 functions in root responses to touch and gravity signals in Arabidopsis. Plant Cell 20:396–410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Björkman T (1988) Perception of gravity by plants. Adv Bot Res 15:1–4

    Google Scholar 

  • Blancaflor EB, Hasenstein KH (1993) Organization of cortical microtubules in graviresponding maize roots. Planta 191:230–237

    Google Scholar 

  • Boyko V, Ferralli J, Heinlein M (2000) Cell-to-cell movement of TMV RNA is temperature-dependent and corresponds to the association of movement protein with microtubules. Plant J 22:315–325

    CAS  PubMed  Google Scholar 

  • Breviario D, Nick P (2000) Plant tubulins: a melting pot for basic questions and promising applications. Transgenic Res 9:383–393

    CAS  PubMed  Google Scholar 

  • Cai G, Cresti M (2012) Are kinesins required for organelle trafficking in plant cells? Front Plant Sci 3:170

    PubMed Central  PubMed  Google Scholar 

  • Chae YC, Lee S, Lee H, Heo K, Kim JH, Kim JH, Suh PG, Ryu SH (2005) Inhibition of muscarinic receptor-linked phospholipase D activation by association with tubulin. J Biol Chem 280:3723–3730

    CAS  PubMed  Google Scholar 

  • Dayandanan P, Kaufman PB (1984) Analysis and significance of gravity-induced asymmetric growth in the grass leaf-sheath pulvinus. Ann Bot 53:29–44

    Google Scholar 

  • Dhonukshe P, Mathur J, Hülskamp M, Gadella TWJ (2005) Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biol 3:11–26

    PubMed Central  PubMed  Google Scholar 

  • Dinesh-Kumar SP, Tham WH, Baker BJ (2000) Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc Natl Acad Sci USA 97:14789–14794

    CAS  PubMed  Google Scholar 

  • Ding JP, Pickard BG (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3:83–110

    CAS  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    CAS  PubMed  Google Scholar 

  • Edwards ES, Roux SJ (1994) Limited period of graviresponsiveness in germinating spores of Ceratopteris richardii. Planta 195:150–152

    CAS  PubMed  Google Scholar 

  • Eggenberger K, Mink C, Wadhwani P, Ulrich AS, Nick P (2011) Using the peptide BP100 as a cell penetrating tool for chemical engineering of actin filaments within living plant cells. ChemBioChem 12:132–137

    CAS  PubMed  Google Scholar 

  • Evans L (1975) Crop physiology. Cambridge University Press, London

    Google Scholar 

  • Fleming AJ, McQueen-Mason S, Mandel T (1997) Induction of leaf primordia by the cell wall protein expansin. Science 276:1415–1418

    CAS  Google Scholar 

  • Fujita M, Himmelspach R, Hocart CH, Williamson RE, Mansfield SD, Wasteneys GO (2011) Cortical microtubules optimize cell-wall crystallinity to drive unidirectional growth in Arabidopsis. Plant J 66:915–928

    CAS  PubMed  Google Scholar 

  • Gardiner JC, Harper JD, Weerakoon ND, Collings DA, Ritchie S, Gilroy S, Cyr RJ, Marc J (2001) A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13:2143–2158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geitmann A, Ortega JK (2009) Mechanics and modeling of plant cell growth. Trends Plant Sci 14:467–478

    CAS  PubMed  Google Scholar 

  • Gibson D, Casal JJ, Deregibus A (1992) The effects of plant density on shoot and leaf lamina angles in Lolium multiflorum and Paspalum dilatatum. Ann Bot 70:69–73

    Google Scholar 

  • Giddings TH, Staehelin LA (1988) Spatial relationship between microtubules and plasma-membrane rosettes during the deposition of primary wall microfibrils in Closterium spec. Planta 173:22–30

    PubMed  Google Scholar 

  • Gittes F, Mickey B, Nettleton J, Howard J (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120:923–934

    CAS  PubMed  Google Scholar 

  • Godbolé R, Michalke W, Nick P, Hertel R (2000) Cytoskeletal drugs and gravity-induced lateral auxin transport in rice coleoptiles. Plant Biol 2:176–181

    Google Scholar 

  • Greber UF, Way M (2006) A superhighway to virus infection. Cell 124:741–754

    CAS  PubMed  Google Scholar 

  • Green PB (1962) Mechanism for plant cellular morphogenesis. Science 138:1401–1405

    Google Scholar 

  • Green PB (1980) Organogenesis – a biophysical view. Annu Rev Plant Physiol 3:51–82

    Google Scholar 

  • Guo L, Devaiah SP, Narasimhan R, Pan X, Zhang Y, Zhang W, Wang X (2012) Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell 24:2200–2212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gus-Mayer S, Naton B, Hahlbrock K, Schmelzer E (1998) Local mechanical stimulation induces components of the pathogen defense response in parsley. Proc Natl Acad Sci USA 95:8398–8403

    CAS  PubMed  Google Scholar 

  • Gutjahr C, Nick P (2006) Acrylamide inhibits gravitropism and destroys microtubules in rice coleoptiles. Protoplasma 227:211–222

    CAS  PubMed  Google Scholar 

  • Haberlandt G (1900) Über die Perzeption des geotropischen Reizes. Ber Dtsch Bot Ges 18:261–272

    Google Scholar 

  • Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655

    CAS  PubMed  Google Scholar 

  • Hämmerling J (1934) Entwicklungsphysiologische und genetische Grundlagen der Formbildung bei der Schirmalge Acetabularia. Naturwissenschaften 22:55–63

    Google Scholar 

  • Hardham AR, Green PB, Lang JM (1980) Reorganization of cortical microtubules and cellulose deposition during leaf formation of Graptopetalum paraguayense. Planta 149:181–195

    CAS  PubMed  Google Scholar 

  • Heath IB (1974) A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J Theor Biol 48:445–449

    CAS  PubMed  Google Scholar 

  • Heinlein M (2008) Microtubules and viral movement. Plant Cell Monogr 143:141–173

    Google Scholar 

  • Heinlein M, Epel BL, Padgett HS, Beachy RN (1995) Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270:1983–1985

    CAS  PubMed  Google Scholar 

  • Hohenberger P, Eing C, Straessner R, Durst S, Frey W, Nick P (2011) Plant actin controls membrane permeability. Biochim Biophys Act 1808:2304–2312

    CAS  Google Scholar 

  • Hong Y, Pan X, Welti R, Wang X (2008) Phospholipase Dα3 is involved in the hyperosmotic response in Arabidopsis. Plant Cell 20:803–816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Irving RM (1969) Characterization and role of an endogenous inhibitor in the induction of cold hardiness in Acer negundo. Plant Physiol 44:801–805

    CAS  PubMed Central  PubMed  Google Scholar 

  • Irving RM, Lanphear FO (1968) Regulation of cold hardiness in Acer negundo. Plant Physiol 43:9–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janmey PA, Weitz DA (2004) Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci 29:364–370

    CAS  PubMed  Google Scholar 

  • Jeworutzki E, Roeflsema MR, Anschütz U, Krol E, Elzenga JT et al (2010) Early signalling through the Arabidopsis pattern recognition receptor FLS2 and EFR involves Ca2+-associated opening of plasma membrane anion channels. Plant J 62:367–378

    CAS  PubMed  Google Scholar 

  • Jian LC, Sun LH, Lin ZP (1989) Studies on microtubule cold stability in relation to plant cold hardiness. Acta Bot Sin 31:737–741

    Google Scholar 

  • Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–545

    CAS  PubMed  Google Scholar 

  • Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol 146:1459–1468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kerr GP, Carter JV (1990) Relationship between freezing tolerance of root-tip cells and cold stability of microtubules in rye (Secale cereale L. Cv. Puma). Plant Physiol 93:77–82

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526

    CAS  PubMed  Google Scholar 

  • Kobayashi I, Kobayashi Y (2008) Microtubules and pathogen defence. Plant Cell Monogr 143:121–140

    Google Scholar 

  • Komis G, Apostolakos P, Galatis B (2002) Hyperosmotic stress induces formation of tubulin macrotubules in root-tip cells of Triticum turgidum: their probable involvement in protoplast volume control. Plant Cell Physiol 43:911–922

    CAS  PubMed  Google Scholar 

  • Komis G, Quader H, Galatis B, Apostolakos P (2006) Macrotubule-dependent protoplast volume regulation in plasmolysed root-tip cells of Triticum turgidum: involvement of phospholipase D. New Phytol 171:737–750

    CAS  PubMed  Google Scholar 

  • Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654

    CAS  PubMed  Google Scholar 

  • Kuznetsov OA, Hasenstein KH (1996) Magnetophoretic induction of root curvature. Planta 198:87–94

    CAS  PubMed  Google Scholar 

  • Laporte C, LoudesAM VG, RobinsonDG HS, Stussi-Garaud C, Ritzenthaler C (2003) Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of grapevine fanleaf virus movement protein in tobacco BY-2 cells. Plant Cell 15:2058–2075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ledbetter MC, Porter KR (1963) A microtubule in plant cell fine structure. J Cell Biol 12:239–250

    Google Scholar 

  • Leopold PL, Pfister KK (2006) Viral strategies for intracellular trafficking: motors and microtubules. Traffic 7:516–523

    CAS  PubMed  Google Scholar 

  • Li J, Jiang J, Qian Q, Xu Y, Zhang C, Xiao J, Du C, Luo W, Zou G, Chen M, Huang S, Feng Y, Cheng Z, Yuan M, Chong K (2011) Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. Plant Cell 23:628–640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li S, Lei L, Somerville CR, Gua Y (2012) Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc Natl Acad Sci USA 109:185–190

    CAS  PubMed  Google Scholar 

  • Lintilhac PM, Vesecky TB (1984) Stress-induced alignment of division plane in plant tissues grown in vitro. Nature 307:363–364

    Google Scholar 

  • Livanos P, Galatis B, Quader H, Apostolakos P (2012) Disturbance of reactive oxygen species homeostasis induces atypical tubulin polymer formation and affects mitosis in root-tip cells of Triticum turgidum and Arabidopsis thaliana. Cytoskeleton 69:1–21

    CAS  PubMed  Google Scholar 

  • Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666:142–157

    CAS  PubMed  Google Scholar 

  • Lucas J, Shaw SL (2008) Cortical microtubule arrays in the Arabidopsis seedling. Curr Opin Plant Biol 11:94–98

    CAS  PubMed  Google Scholar 

  • Lucas WJ, Yoo BC, Kragler F (2001) RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol 2:849–857

    CAS  PubMed  Google Scholar 

  • Luib M, Schott PE (1990) Einsatz von Bioregulatoren. In: Haug G, Schuhmann G, Fischbeck G (eds) Pflanzenproduktion im Wandel – Neue Aspekte in den Agrarwissenschaften. Verlag Chemie, Weinheim, pp 275–304

    Google Scholar 

  • Lyons JM (1973) Chilling injury in plants. Annu Rev Plant Physiol 24:445–466

    CAS  Google Scholar 

  • Maeda E (1965) Rate of lamina inclination in excised rice leaves. Physiol Plantarum 18:813–827

    CAS  Google Scholar 

  • Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136:719–730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinière A, Gargani D, Uzest M, Lautredou N, Blanc S, Drucker M (2009) A role for plant microtubules in the formation of transmission-specific inclusion bodies of cauliflower mosaic virus. Plant J 58:135–146

    PubMed  Google Scholar 

  • Matsumoto S, Kumasaki S, Soga K, Wakabayashi K, Hashimoto T, Hoson T (2010) Gravity-induced modifications to development in hypocotyls of Arabidopsis tubulin mutants. Plant Physiol 152:918–926

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazars C, Thion L, Thuleau P, Graziana A, Knight MR, Moreau M, Ranjeva R (1997) Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts. Cell Calcium 22:413–420

    CAS  PubMed  Google Scholar 

  • McAinsh MR, Hetherington AM (1998) Encoding specificity in Ca2+ signalling systems. Trends Plant Sci 3:32–36

    Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    CAS  PubMed  Google Scholar 

  • Mizuno T, Miyashita M, Miyagawa H (2009) Cellular internalization of arginine-rich peptides into tobacco suspension cells: a structure–activity relationship study. J Pept Sci 15:259–263

    CAS  PubMed  Google Scholar 

  • Modig C, Strömberg E, Wallin M (1994) Different stability of posttranslationally modified brain microtubules isolated from cold-temperate fish. Mol Cell Biochem 130:137–147

    CAS  PubMed  Google Scholar 

  • Molisch H (1897) Untersuchungen über das Erfrieren der Pflanzen. Gustav Fischer Verlag, Jena, p 73

    Google Scholar 

  • Monroy AF, Sarhan F, Dhindsa RS (1993) Cold-induced changes in freezing tolerance, protein phosphorylation, and gene expression. Plant Physiol 102:1227–1235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monteith JL, Elston LF (1971) Microclimatology and crop production. In: Wareing PF, Cooper JP (eds) Potential crop production. Heinemann, London, pp 129–139

    Google Scholar 

  • Morettini S, Gianì S, Nick P, Morello L, Breviario D (2013) Two anti-microtubular drugs for two differential responses: a rice cell line resistant to EPC remains susceptible to Oryzalin. Plant Physiol Biochem 63:107–114

    CAS  PubMed  Google Scholar 

  • Mulder B, Schell J, Emons AM (2004) How the geometrical model for plant cell wall formation enables the production of a random texture. Cellulose 11:395–401

    CAS  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in chilling sensitivity of plants. Nature 356:710–713

    CAS  Google Scholar 

  • Nemec B (1900) Über die Art der Wahrnehmung des Schwerkraftreizes bei den Pflanzen. Ber Dtsch Bot Ges 18:241–245

    Google Scholar 

  • Nick P (2000) Control of plant shape. In: Nick P (ed) Plant microtubules – potential for biotechnology. Springer Verlag, Heidelberg Berlin, pp 24–46

    Google Scholar 

  • Nick P (2008a) Control of cell axis. In: Nick P (ed) Plant microtubules. Plant cell monogr 143, pp 3–46

    Google Scholar 

  • Nick P (2008b) Microtubules as sensors for abiotic stimuli. Plant Cell Monogr 143:175–203

    Google Scholar 

  • Nick P, Bergfeld R, Schäfer E, Schopfer P (1990) Unilateral reorientation of microtubules at the outer epidermal wall during photo- and gravitropic curvature of maize coleoptiles and sunflower hypocotyls. Planta 181:162–168

    CAS  PubMed  Google Scholar 

  • Nick P, Schäfer E, Hertel R, Furuya M (1991) On the putative role of microtubules in gravitropism of maize coleoptiles. Plant Cell Physiol 32:873–880

    CAS  Google Scholar 

  • Nick P, Yatou O, Furuya M, Lambert AM (1994) Auxin-dependent microtubule responses and seedling development are affected in a rice mutant resistant to EPC. Plant J 6:651–663

    CAS  Google Scholar 

  • Nick P, Christou P, Breviario D (2003) Generating transgenic plants by minimal addition of exogenous DNA – a novel selection marker based on plant tubulins. AgBiotechNet 5, ABN 105

    Google Scholar 

  • Niklas KJ, Spatz H-C (2004) Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proc Natl Acad Sci USA 101:15661–15663

    CAS  PubMed  Google Scholar 

  • Nishiyama I (1986) Lodging of rice plants and countermeasure. FFTC Book Ser Taiwan 34:152–163

    Google Scholar 

  • Oda K, Suzuki M, Odagawa T (1966) Varietal analysis of physical characters in wheat and barley plants relating to lodging and lodging index. Bull Natl Inst Agric Sci Tokyo 15:55–91

    Google Scholar 

  • Ouko MO, Sambade A, Brandner K, Ahad A, Heinlein M, Nick P (2010) Tobacco mutants with reduced microtubule dynamics are less susceptible to TMV. Plant J 62:829–839

    CAS  PubMed  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    CAS  PubMed  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) Green revolution genes encode mutant gibberellin response modulators. Nature 400:256–261

    CAS  PubMed  Google Scholar 

  • Pickard BG (2008) “Second extrinsic organizational mechanism” for orienting cellulose: modeling a role for the plasmalemmal reticulum. Protoplasma 233:7–29

    CAS  PubMed  Google Scholar 

  • Pihakaski-Maunsbach K, Puhakainen T (1995) Effect of cold exposure on cortical microtubules of rye (Secale cereale) as observed by immunocytochemistry. Physiol Plant 93:563–571

    CAS  Google Scholar 

  • Preston RD (1988) Cellulose-microfibril-orienting mechanisms in plant cell walls. Planta 174:61–74

    Google Scholar 

  • Qiao F, Chang X, Nick P (2010) The cytoskeleton enhances gene expression in the response to the Harpin elicitor in grapevine. J Exp Bot 61:4021–4031

    CAS  PubMed  Google Scholar 

  • Radtke K, Dohner K, Sodeik B (2006) Viral interactions with the cytoskeleton: a hitchhiker’s guide to the cell. Cell Microbiol 8:387–400

    CAS  PubMed  Google Scholar 

  • Rikin A, Waldman M, Richmond AE, Dovrat A (1975) Hormonal regulation of morphogenesis and cold resistance. I. Modifications by abscisic acid and gibberellic acid in alfalfa (Medicago sativa L.) seedlings. J Exp Bot 26:175–183

    CAS  Google Scholar 

  • Rikin A, Atsmon D, Gitler C (1980) Chilling injury in cotton (Gossypium hirsutum L.): effects of antimicrotubular drugs. Plant Cell Physiol 21:829–837

    CAS  Google Scholar 

  • Sakamoto T, Matsuoka M (2004) Generating high-yielding varieties by genetic manipulation of plant architecture. Curr Op Biotech 15:144–147

    CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2006) Brassinosteroid-induced bending of the leaf lamina of dwarf rice seedlings: an auxin-mediated phenomenon. Nat Biotechnol 24:105–109

    CAS  PubMed  Google Scholar 

  • Sakiyama M, Shibaoka H (1990) Effects of abscisic acid on the orientation and cold stability of cortical microtubules in epicotyl cells of the dwarf pea. Protoplasma 157:165–171

    CAS  Google Scholar 

  • Sambade A, Brandner K, Hofmann C, Seemanpillai M, Mutterer J, Heinlein M (2008) Transport of TMV movement protein particles associated with the targeting of RNA to plasmodesmata. Traffic 9:2073–2088

    CAS  PubMed  Google Scholar 

  • Sandblad L, Busch KE, Tittmann P, Gross H, Brunner D, Hoenger A (2006) The Schizosaccharomyces pombe EB1 homolog Mal3p binds and stabilizes the microtubule lattice seam. Cell 127:1415–1424

    CAS  PubMed  Google Scholar 

  • Sangwan V, Foulds I, Singh J, Dhindsa RS (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J 27:1–12

    CAS  PubMed  Google Scholar 

  • Savage C, Hamelin M, Culotti JG, Coulson A, Albertson DG, Chalfie M (1989) mec-7 is a β-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. Genes Dev 3:870–881

    CAS  PubMed  Google Scholar 

  • Schmelzer E (2002) Cell polarization, a crucial process in fungal defence. Trends Plant Sci 7:411–415

    CAS  PubMed  Google Scholar 

  • Seung D, Webster MW, Wang R, Andreeva Z, Marc J (2013) Dissecting the mechanism of abscisic acid-induced dynamic microtubule reorientation using live cell imaging. Funct Plant Biol 40:224–236

    Google Scholar 

  • Smith H (1981) Adaptation to shade. In: Johnson CB (ed) Physiological processes limiting plant productivity. Butterworths, London, pp 159–173

    Google Scholar 

  • Stokes A, Fitter AH, Coutts MP (1995) Responses of young trees to wind: effects on root architecture and anchorage strength. J Exp Bot 46:1139–1146

    CAS  Google Scholar 

  • Su Y, Doherty T, Waring AJ, Ruchala P, Hong M (2009) Roles of arginine and lysine residues in the translocation of a cell-penetrating peptide from 13C, 31P, and 19F solid-state NMR. Biochemistry 48:4587–4595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki K, Nagasuga K, Okada M (2008) The chilling injury induced by high root temperature in the leaves of rice seedlings. Plant Cell Physiol 49:433–442

    CAS  PubMed  Google Scholar 

  • Takemoto D, Hardham AR (2004) The cytoskeleton as a regulator and target of biotic interactions in plants. Plant Physiol 136:3864–3876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takeno K, Pharis RP (1982) Brassinosteroid-induced bending of the leaf lamina of dwarf rice seedlings: an auxin-mediated phenomenon. Plant Cell Physiol 23:1275–1281

    CAS  Google Scholar 

  • Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballaré CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykręt D, Dedieu A, Peaucelle A, Ludynia M, Traas J, Boudaoud A, Kwiatkowska D, Hamant O (2012) Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149:439–451

    CAS  PubMed  Google Scholar 

  • Vaughn KC (2000) Anticytoskeletal herbicides. In: Nick P (ed) Plant microtubules – potential for biotechnology. Springer, Berlin, pp 193–206

    Google Scholar 

  • Vavilov NI (1922) The law of homologous series in variation. J Genet 12:47–89

    Google Scholar 

  • Wang Y, Li J (2006) Genes controlling plant architecture. Curr Opin Biotechnol 17:123–129

    CAS  PubMed  Google Scholar 

  • Wang QY, Nick P (1998) The auxin response of actin is altered in the rice mutant Yin-Yang. Protoplasma 204:22–33

    CAS  PubMed  Google Scholar 

  • Wang QY, Nick P (2001) Cold acclimation can induce microtubular cold stability in a manner distinct from abscisic acid. Plant Cell Physiol 42:999–1005

    CAS  PubMed  Google Scholar 

  • Wang S, Kurepa J, Hashimoto T, Smalle JA (2011) Salt stress-induced disassembly of Arabidopsis cortical microtubule arrays involves 26S proteasome-dependent degradation of SPIRAL1. Plant Cell 23:3412–3427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warren-Wilson JD (1966) An analysis of plant growth and its control in the arctic environment. Ann Bot 30:383–402

    Google Scholar 

  • Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol 7:651–660

    CAS  PubMed  Google Scholar 

  • Watson DJ (1952) The physiological basis of variation in yield. Adv Agron 4:101–145

    Google Scholar 

  • Wiesler B, Wang QY, Nick P (2002) The stability of cortical microtubules depends on their orientation. Plant J 32:1023–1032

    CAS  PubMed  Google Scholar 

  • Wymer C, Wymer SA, Cosgrove DJ, Cyr RJ (1996) Plant cell growth responds to external forces and the response requires intact microtubules. Plant Physiol 110:425–430

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu L, Henke M, Zhu J, Kurth W, Buck-Sorlin G (2011) A functional–structural model of rice linking quantitative genetic information with morphological development and physiological processes. Ann Bot 107:817–828

    CAS  PubMed  Google Scholar 

  • Yoneda A, Higaki T, Kutsuna N, Kondo Y, Osada H, Hasezawa S, Matsui M (2007) Chemical genetic screening identifies a novel inhibitor of parallel alignment of cortical microtubules and cellulose microfibrils. Plant Cell Physiol 48:1393–1403

    CAS  PubMed  Google Scholar 

  • Yoneda A, Ito T, Higaki T, Kutsuna N, Saito T, Ishimizu T, Osada H, Hasezawa S, Matsui M, Demura T (2010) Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules. Plant J 64:657–667

    CAS  PubMed  Google Scholar 

  • Zhang M, Zhang B, Qian Q, Yu Y, Li R, Zhang J, Liu X, Zeng D, Li J, Zhou Y (2010) Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice. Plant J 63:312–328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao SQ (2010) Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar. Cell Res 20:935–947

    CAS  PubMed  Google Scholar 

  • Zheng B, Shi L, Ma Y, Deng Q, Li B, Guo Y (2008) Comparison of architecture among different cultivars of hybrid rice using a spatial light model based on 3-D digitising. Funct Plant Biol 35:900–910

    Google Scholar 

  • Zhong R, Burk DH, Morrison WH, Ye ZH (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14:3101–3117

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Nick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nick, P. (2014). Why to Spend Tax Money on Plant Microtubules?. In: Nick, P., Opatrny, Z. (eds) Applied Plant Cell Biology. Plant Cell Monographs, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41787-0_2

Download citation

Publish with us

Policies and ethics