Skip to main content

Metabolic Engineering of Wood Formation

  • Chapter
  • First Online:
Applied Plant Cell Biology

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 22))

Abstract

Wood is one of the most abundant composite materials on earth consisting primarily of cellulose, noncellulosic polysaccharides and lignin. It is a sustainable and quite versatile natural resource that can be processed into many useful products including biofuels, biochemicals, wood pellets, pulp and paper, fibres, biocomposites and timber. Transgenic studies targeting wood formation have in the past largely been of exploratory nature to better understand the molecular basis of wood formation. However, metabolic engineering approaches of woody biomass designed to enhance the quality and quantity of desired end products started to emerge in recent years. A substantial number of studies have recently been published on improving the generation of bioenergy or biofuels from lignocellulosic material, reflecting this new trend in the utilization of woody biomass. A sizable body of literature also exists on metabolic engineering strategies designed to improve the production of pulp and paper, which are important traditional products derived from lignocellulosic material. All these product streams are influenced by the structure and content of cell wall polymers that constitute wood, justifying the current research effort on this topic. Metabolic engineering experiments trying to increase the formation of woody biomass itself have also gained momentum in recent years. Metabolic engineering strategies designed to improve the quality of wood or to enhance the production of nontraditional bioproducts from wood seem also to be feasible but have received little attention to date. This might in part reflect our insufficient knowledge on biochemical and cellular processes that govern wood formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akin DE (2007) Grass lignocellulose: strategies to overcome recalcitrance. Appl Biochem Biotechnol 137–140:3–15

    PubMed  Google Scholar 

  • Ambavaram MMR, Krishnan A, Trijatmiko KR, Pereira A (2011) Coordinated activation of cellulose and repression of lignin biosynthesis pathways in rice. Plant Physiol 155:916–931

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balakshin M, Capanema E, Gracz H, Chang H, Jameel H (2011) Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233:1097–1110

    CAS  PubMed  Google Scholar 

  • Barnes JR, Lorenz WW, Dean JFD (2008) Characterization of a 1-aminocyclopropane-1-carboxylate synthase gene from loblolly pine (Pinus taeda L.). Gene 413:18–31

    CAS  PubMed  Google Scholar 

  • Baya M, Soulounganga P, Gelhaye E, Grardin P (2001) Fungicidal activity of β–thujaplicin analogues. Pest Manag Sci 57:833–838

    CAS  PubMed  Google Scholar 

  • Bentley R (2008) A fresh look at natural tropolonoids. Nat Prod Rep 25:118–138

    CAS  PubMed  Google Scholar 

  • Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19:148–162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44:337–363

    CAS  PubMed  Google Scholar 

  • Boudet AM (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68:2722–2735

    CAS  PubMed  Google Scholar 

  • Brunow G, Lundquist K (2010) Functional groups and bonding patterns in lignin. In: Heitner C, Dimmel D, Schmidt JA (eds) Lignin and lignans. CRC Press, Boca Raton, pp 267–300

    Google Scholar 

  • Campbell MM, Sederoff RR (1996) Variation in lignin content and composition: mechanisms of control and implications for the genetic improvement of plants. Plant Physiol 110:3–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carpita NC (2012) Progress in the biological synthesis of the plant cell wall: new ideas for improving biomass for bioenergy. Curr Opin Biotechnol 23:330–337

    CAS  PubMed  Google Scholar 

  • Chen F, Tobimatsu Y, Havkin-Frenkel D, Dixon RA, Ralph J (2012) A polymer of caffeyl alcohol in plant seeds. Proc Natl Acad Sci U S A 109:1772–1777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coleman HD, Canam T, Kang KY, Ellis DD, Mansfield SD (2007) Over-expression of UDP-glucose pyrophosphorylase in hybrid poplar affects carbon allocation. J Exp Bot 58:4257–4268

    CAS  PubMed  Google Scholar 

  • Coleman HD, Yan J, Mansfield SD (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci U S A 106:13118–13123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Core HA, Cote WA, Day AC (1979) Wood structure and identification. Syracuse University Press, Syracuse

    Google Scholar 

  • Cosgrove DJ (2001) Wall structure and wall loosening. A look backwards and forwards. Plant Physiol 125:131–134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cown DJ (1992) Corewood (juvenile wood) in Pinus radiata – should we be concerned? N Z J For Sci 22:87–95

    Google Scholar 

  • Cown DJ, Ball RD, Riddell MJC (2004) Wood density and microfibril angle in 10 Pinus radiata clones: distribution and influence on product performance. N Z J For Sci 34:293–315

    Google Scholar 

  • Dauwe R, Morreel K, Goeminne G, Gielen B, Rohde A, Van Beeumen J, Ralph J, Boudet A–M, Kopka J, Rochange SF, Halpin C, Messens E, Boerjan W (2007) Molecular phenotyping of lignin–modified tobacco reveals associated changes in cell–wall metabolism, primary metabolism, stress metabolism and photorespiration. Plant J 52:263–285

    CAS  PubMed  Google Scholar 

  • Demura T, Ye Z–H (2010) Regulation of plant biomass production. Curr Opin Plant Biol 13:299–304

    PubMed  Google Scholar 

  • Donaldson LA (2001) Lignification and lignin topochemistry – an ultrastructural view. Phytochemistry 57:859–873

    CAS  PubMed  Google Scholar 

  • Donaldson LA (2008) Microfibril angle: measurement, variation and relationships. IAWA J 29:345–386

    Google Scholar 

  • Du J, Groover A (2010) Transcriptional regulation of secondary growth and wood formation. J Integr Plant Biol 52:17–27

    CAS  PubMed  Google Scholar 

  • Eudes A, George A, Mukerjee P, Kim JS, Pollet B, Benke PI, Yang F, Mitra P, Sun L, Çetinkol OP, Chabout S, Mouille G, Soubigou-Taconnat L, Balzergue S, Singh S, Holmes BM, Mukhopadhyay A, Keasling JD, Simmons BA, Lapierre C, Ralph J, Loqué D (2012) Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol J 10:609–620

    CAS  PubMed  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their function and development. Wiley, Hoboken, 601 pp

    Google Scholar 

  • Fengel D, Wegener G (1984) Wood chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Fenning TM, Walter C, Gartland KMA (2008) Forest biotech and climate change. Nat Biotechnol 26:615–617

    CAS  PubMed  Google Scholar 

  • Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C (2000) Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5–hydroxylase. Plant J 22:223–234

    CAS  PubMed  Google Scholar 

  • Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45:820–831

    CAS  Google Scholar 

  • Grabber JH, Hatfield RD, Lu F, Ralph J (2008) Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of cell walls. Biomacromolecules 9:2510–2516

    CAS  PubMed  Google Scholar 

  • Grabber JH, Schatz PF, Kim H, Lu F, Ralph J (2010) Identifying new lignin bioengineering targets: 1. Monolignol substitute impacts on lignin formation and cell wall fermentability. BMC Plant Biol 10:1–13

    Google Scholar 

  • Harfouche A, Meilan R, Altmane A (2011) Tree genetic engineering and applications to sustainable forestry and biomass production. Trends Biotechnol 29:9–17

    CAS  PubMed  Google Scholar 

  • Harris PJ (2006) Primary and secondary plant cell walls: a comparative overview. N Z J For Sci 36:36–53

    CAS  Google Scholar 

  • Hinchee M, Rottmann W, Mullinax L, Zhang C, Chang S, Cunningham M, Pearson L, Nehra N (2009) Short–rotation woody crops for bioenergy and biofuels applications. In Vitro Cell Dev Biol Plant 45:619–629

    PubMed Central  PubMed  Google Scholar 

  • Hirsch S (2012) FuturaGene starts final Brazilian field trial for yield enhanced eucalyptus plantations. http://www.futuragene.com/Futuragene-Brazil-field-trials.pdf. Accessed 10 Jan 2013

  • Hudgins JW, Franceschi VR (2004) Methyl jasmonate-induced ethylene production is responsible for conifer phloem defence responses and re-programming of stem cambial zone for traumatic resin duct formation. Plant Physiol 135:2134–2149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hudgins JW, Ralph SG, Franceschi VR, Bohlmann J (2006) Ethylene in induced conifer defence: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane-1-carboxylate oxidase in resin duct and phenolic parenchyma cells. Planta 224:865–877

    CAS  PubMed  Google Scholar 

  • Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD (2003) Significant increases in pulping efficiency in C4H-F5H-transformed poplars: improved chemical savings and reduced environmental toxins. J Agric Food Chem 51:6178–6183

    CAS  PubMed  Google Scholar 

  • Jane FW (1970) The structure of wood. A&C Black, London

    Google Scholar 

  • Jing ZP, Gallardo F, Pascual MB, Sampalo R, Romero J, Navarra D, Torres A, Cánovas FM (2004) Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol 164:137–145

    CAS  Google Scholar 

  • Jordan DB, Bowman MJ, Braker JD, Dien BS, Hector RE, Lee CC, Mertens JA, Wagschal K (2012) Plant cell walls to ethanol. Biochem J 442:241–252

    CAS  PubMed  Google Scholar 

  • Kasahara H, Jiao Y, Bedgar DL, Kim SJ, Patten AM, Xia Z–Q, Davin LB, Lewis NG (2006) Pinus taeda phenylpropenal double-bond reductase: purification, cDNA cloning, heterologous expression in Escherichia coli, and subcellular localization in P. taeda. Phytochemistry 67:1765–1780

    CAS  PubMed  Google Scholar 

  • Kibblewhite RP, Evans R, Riddell MJC (2003) Kraft handsheet, and wood tracheid and chemical property interrelationships for 50 individual Pinus radiata trees. Appita J 56:229–233

    CAS  Google Scholar 

  • Krupková E, Immerzeel P, Pauly M, Schmülling T (2007) The tumorous shoot development 2 gene of Arabidopsis encoding a putative methyl-transferase is required for cell adhesion and co–ordinated plant development. Plant J 50:735–750

    PubMed  Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP, Singh A, Zhang Y–HP (2011) Bioethanol production from pentose sugars: current status and future prospects. Renew Sust Energy Rev 15:4950–4962

    CAS  Google Scholar 

  • LaPasha CA, Wheeler EA (1990) Resin canals in Pinus taeda, longitudinal canal lengths and interconnections between longitudinal and radial canals. IAWA Bull 11:227–238

    Google Scholar 

  • Lee C, Teng Q, Huang W, Zhong R, Ye Z–H (2009) Down–regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulose. Plant Cell Physiol 50:1075–1089

    CAS  PubMed  Google Scholar 

  • Lehringer C, Daniel G, Schmitt U (2009) TEM/FE-SEM studies on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L. Wood Sci Technol 43:691–702

    CAS  Google Scholar 

  • Levy I, Shani Z, Shoseyov O (2002) Modification of polysaccharides and plant cell wall by endo–1,4–β–glucanase and cellulose-binding domains. Biomol Eng 19:17–30

    CAS  PubMed  Google Scholar 

  • Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci U S A 100:4939–4944

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Wu HX, Southerton SG (2012) Identification of putative candidate genes for juvenile wood density in Pinus radiata. Tree Physiol 32:1046–1057

    CAS  PubMed  Google Scholar 

  • Liang H, Frost CJ, Wei X, Brown NR, Carlson JE, Tien M (2008) Improved sugar release from lignocellulosic material by introducing a tyrosine-rich cell wall peptide gene in poplar. Clean – Soil Air Water 36(8):662–688

    Google Scholar 

  • Lim BL (2012) A dual-targeted purple acid phosphatase in Arabidopsis thaliana. New Phytol 194:206–219

    PubMed  Google Scholar 

  • Liwanag AJM, Ebert B, Verhertbruggen Y, Rennie EA, Rautengarten C, Oikawa A, Andersen MCF, Clausen MH, Sheller HV (2012) Pectin biosynthesis: GalS1 in Arabidopsis thaliana is a β(1,4)-galactan β(1,4)-galactosyltransferase. Plant Cell. doi:10.1105/tpc.112.106625

    PubMed Central  PubMed  Google Scholar 

  • Macdonald JE, Little CHA (2006) Foliar application of GA3 during terminal long-shoot bud development stimulates shoot apical meristem activity in Pinus sylvestris seedlings. Tree Physiol 26:1271–1276

    CAS  PubMed  Google Scholar 

  • Madhavan A, Srivastava A, Kondo A, Bisaria VS (2012) Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Crit Rev Biotechnol 32:22–48

    CAS  PubMed  Google Scholar 

  • Mast SW, Donaldson L, Torr K, Phillips L, Flint H, West M, Strabala TJ, Wagner A (2009) Exploring the ultrastructural localization and biosynthesis of β(1,4)-galactan in Pinus radiata compression wood. Plant Physiol 150:573–583

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCarthy RL, Zhong R, Fowler S, Lyskowski D, Piyasena H, Carleton K, Spicer C, Ye ZH (2010) The poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynthesis. Plant Cell Physiol 51:1084–1090

    CAS  PubMed  Google Scholar 

  • Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mizrachi E, Mansfield SD, Myburg AA (2012) Cellulose factories: advancing bioenergy production from forest trees. New Phytol 194:54–62

    CAS  PubMed  Google Scholar 

  • Muñiz L, Minguet EG, Singh SK, Pesquet E, Vera-Sirera F, Moreau-Courtois CL, Carbonell J, Blázquez MA, Tuominen H (2008) ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development 135:2573–2582

    PubMed  Google Scholar 

  • Naoumkina M, Vaghchhipawala S, Tang Y, Ben Y, Powell RJ, Dixon RA (2008) Metabolic and genetic perturbations accompany the modification of galactomannan in seeds of Medicago truncatula expressing mannan synthase from guar (Cyamopsis tetragonoloba L.). Plant Biotechnol J 6:619–631

    CAS  PubMed  Google Scholar 

  • Nieminen K, Robischon M, Immanen J, Helariutta Y (2012) Towards optimizing wood development in bioenergy trees. New Phytol 194:46–53

    CAS  PubMed  Google Scholar 

  • Ohtani M, Nishikubo N, Xu B, Yamaguchi M, Mitsuda N, Goué N, Shi F, Ohme-Takagi M, Demura T (2011) A NAC domain protein family contributing to the regulation of wood formation in poplar. Plant J 67:499–512

    CAS  PubMed  Google Scholar 

  • Park YW, Tominaga R, Sugiyama J, Furuta Y, Tanimoto E, Samejima M, Sakai F, Hayashi T (2003) Enhancement of growth by expression of poplar cellulase in Arabidopsis thaliana. Plant J 33:1099–1106

    CAS  PubMed  Google Scholar 

  • Park YW, Baba K, Furuta Y, Iida I, Sameshima K, Arai M, Hayashi T (2004) Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FEBS Lett 564:183–187

    CAS  PubMed  Google Scholar 

  • Park J–Y, Canam T, Kang K–Y, Unda F, Mansfield SD (2009) Sucrose phosphate synthase expression influences poplar phenology. Tree Physiol 29:937–946

    CAS  PubMed  Google Scholar 

  • Pauly M, Keegstra K (2008) Cell–wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

    CAS  PubMed  Google Scholar 

  • Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 13:305–312

    CAS  PubMed  Google Scholar 

  • Peter G (2012) Converting biomass to biofuels. Florida energy summit, 15th–17th of August 2012, Orlando. http://www.floridaenergysummit.com/pdfs/presentations2012/peter.pdf. Accessed 8 Jan 2013

  • Pu Y, Kosa M, Kalluri UC, Tuskan GA, Ragauskas AJ (2011) Challenges of the utilization of wood polymers: how can they be overcome? Appl Microbiol Biotechnol 91:1525–1536

    CAS  PubMed  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    CAS  PubMed  Google Scholar 

  • Ralph J (2010) Hydroxycinnamates in lignification. Phytochem Rev 9:65–83

    CAS  Google Scholar 

  • Ralph J, MacKay JJ, Hatfield RD, O’Malley DM, Whetten RW, Sederoff RR (1997) Abnormal lignin in a loblolly pine mutant. Science 277:235–239

    CAS  PubMed  Google Scholar 

  • Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev 3:29–60

    CAS  Google Scholar 

  • Reiter WD (2008) Biochemical genetics of nucleotide sugar interconversion reactions. Curr Opin Plant Biol 11:236–243

    CAS  PubMed  Google Scholar 

  • Rogers LA, Dubos C, Surman C, Willment J, Cullis IF, Mansfield SD, Camp-bell MM (2005) Comparison of lignin deposition in three ectopic lignification mutants. New Phytol 168:123–140

    CAS  PubMed  Google Scholar 

  • Shani Z, Dekel M, Tsabary G, Goren R, Shoseyov O (2004) Growth enhancement of transgenic poplar plants by overexpression of Arabidopsis thaliana endo-1,4-β-glucanase (cel1). Mol Breed 14:321–330

    Google Scholar 

  • Shani Z, Dekel M, Roiz L, Horowitz M, Kolosovski N, Lapidot S, Alkan S, Koltai H, Tsabary G, Goren R, Shoseyov O (2006) Expression of endo-1,4-β-glucanase (cel1) in Arabidopsis thaliana is associated with plant growth, xylem development and cell wall thickening. Plant Cell Rep 25:1067–1074

    CAS  PubMed  Google Scholar 

  • Sibout R, Baucher M, Gatineau M, Van Doorsselaere J, Mila I, Pollet B, Maba B, Pilate G, Lapierre C, Boerjan W, Jouanin L (2002) Expression of a poplar cDNA encoding a ferulate-5–hydroxylase/coniferaldehyde 5-hydroxylase increases S lignin deposition in Arabidopsis thaliana. Plant Physiol Biochem 40:1087–1096

    CAS  Google Scholar 

  • Skjøt M, Pauly M, Bush MS, Borkhardt B, McCann MC, Ulvskov P (2002) Direct interference with rhamnogalacturonan I biosynthesis in Golgi vesicles. Plant Physiol 129:95–102

    PubMed Central  PubMed  Google Scholar 

  • Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD (2009) The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Physiol 150:621–635

    CAS  PubMed Central  PubMed  Google Scholar 

  • Studer MH, DeMartini JD, Davis M, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE (2011) Lignin content in natural populus variants affects sugar release. Proc Natl Acad Sci U S A 108:6300–6305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tilbrook K, Gebbie L, Schenk PM, Poirier Y, Brumbley SM (2011) Peroxisomal polyhydroxyalkanoate biosynthesis is a promising strategy for bioplastic production in high biomass crops. Plant Biotechnol J 9:958–969

    CAS  PubMed  Google Scholar 

  • Timell TE (1986) Bibliography, historical background, determination, structure, chemistry, topochemistry, physical properties, origin and formation of compression wood. In: Compression wood in gymnosperms. Springer, New York

    Google Scholar 

  • Torr KM, Singh AP, Franich RA (2006) Improving stiffness of lignocellulosics through cell wall modification with chitosan-melamine co-polymers. N Z J For Sci 36:87–98

    CAS  Google Scholar 

  • Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23:364–381

    CAS  PubMed  Google Scholar 

  • Tullo AH (2012) Making wood last forever with acetylation. Chem Eng News 90:22–23

    CAS  Google Scholar 

  • Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W (2012) Metabolic engineering of novel lignin in biomass crops. New Phytol 196:978–1000

    CAS  PubMed  Google Scholar 

  • Voelker SL, Lachenbruch B, Meinzer FC, Strauss SH (2011) Reduced wood stiffness and strength, and altered stem form, in young antisense 4CL transgenic poplars with reduced lignin contents. New Phytol 189:1096–1109

    PubMed  Google Scholar 

  • Wadenbäck J, von Arnold S, Egertsdotter U, Walter MH, Grima-Pettenati J, Goffner D, Gellerstedt G, Gullion T, Clapham D (2008) Lignin biosynthesis in transgenic Norway spruce plants harbouring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenic Res 17:379–392

    PubMed  Google Scholar 

  • Wagner A, Phillips L, Narayan RD, Moody JM, Geddes B (2005) Gene silencing studies in the gymnosperm species Pinus radiata. Plant Cell Rep 24:95–102

    CAS  PubMed  Google Scholar 

  • Wagner A, Ralph J, Akiyama T, Flint H, Phillips L, Torr K, Nanayak-kara B, Te Kiri L (2007) Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyltransferase in Pinus radiata. Proc Natl Acad Sci U S A 104:11856–11861

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner A, Donaldson L, Kim H, Flint H, Phillips L, Steward D, Torr K, Koch G, Schmitt U, Ralph J (2009) Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiol 149:370–383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner A, Tobimatsu Y, Phillips L, Flint H, Torr K, Donaldson L, Pears L, Ralph J (2011) CCoAOMT suppression modifies lignin composition in Pinus radiata. Plant J 67:119–129

    CAS  PubMed  Google Scholar 

  • Wagner A, Donaldson L, Ralph J (2012) Lignification and lignin manipulations in conifers. Adv Bot Res 61:37–76

    CAS  Google Scholar 

  • Wagner A, Tobimatsu Y, Goeminne G, Phillips L, Flint H, Steward D, Torr K, Donaldson L, Boerjan W, Ralph J (2013) Suppression of CCR impacts metabolite profile and cell wall composition in Pinus radiata tracheary elements. Plant Mol Biol 81:105–117

    CAS  PubMed  Google Scholar 

  • Yamaguchi M, Demura T (2010) Transcriptional regulation of secondary wall formation controlled by NAC domain proteins. Plant Biotechnol 27:237–242

    CAS  Google Scholar 

  • Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, Demura T (2011) VASCULAR–RELATED NAC–DOMAIN 7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J 66:579–590

    CAS  PubMed  Google Scholar 

  • Yasuda R, Minato K (1994) Chemical modification of wood by non-formaldehyde cross-linking agents. Wood Sci Technol 28:101–110

    CAS  Google Scholar 

  • Ye X, Busov V, Zhao N, Meilan R, McDonnell LM, Coleman HD, Mansfield SD, Chen F, Li Y, Cheng ZM (2011) Transgenic Populus trees for forest products, bioenergy, and functional genomics. Crit Rev Plant Sci 30:415–434

    Google Scholar 

  • Zhang J, Elo A, Helariutta Y (2011) Arabidopsis as a model for wood formation. Curr Opin Biotechnol 22:293–299

    CAS  PubMed  Google Scholar 

  • Zhao Q, Dixon RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 16:227–233

    CAS  PubMed  Google Scholar 

  • Zhong R, Ye ZH (2012) MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant Cell Physiol 53:368–380

    CAS  PubMed  Google Scholar 

  • Zhong R, Ripperger A, Ye ZH (2000) Ectopic deposition of lignin in the pith of stems of two Arabidopsis mutants. Plant Physiol 123:59–69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong R, Demura T, Ye ZH (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibres of Arabidopsis. Plant Cell 18:3158–3170

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong R, Mccarthy RL, Lee C, Ye ZH (2011) Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar. Plant Physiol 157:1452–1468

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the New Zealand Ministry of Business, Innovation and Employment and Scion for financial support and Elspeth MacRae for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wagner, A., Donaldson, L. (2014). Metabolic Engineering of Wood Formation. In: Nick, P., Opatrny, Z. (eds) Applied Plant Cell Biology. Plant Cell Monographs, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41787-0_12

Download citation

Publish with us

Policies and ethics