Skip to main content

From Němec and Haberlandt to Plant Molecular Biology

  • Chapter
  • First Online:
Applied Plant Cell Biology

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 22))

Abstract

The high regenerative capacity of plants is a crucial feature of their life strategy. It is an essential part of the mechanisms that both allow these sessile organisms to repair injury caused by pathogens, herbivores and abiotic factors and to undergo rapid vegetative reproduction, so allowing them to dominate in particular environmental niches. Furthermore, various forms of natural regeneration contribute to techniques that are widely used in plant propagation and plant breeding. The biological nature of plant regeneration has been studied since the very beginnings of plant physiology as a science. Research on regeneration of intact plants in vivo was conducted by Bohumil Němec, and early studies of in vitro regeneration in plant tissue cultures were carried out by Gottlieb Haberlandt. At this stage, however, suggestions that somatic plant cells possessed a regeneration “totipotency” were in practice often not acknowledged. Nevertheless, real experiments demonstrated that the regenerative ability of particular cells and tissues is clearly determined by the specific interplay of both genetic (or epigenetic) and physiological factors. This makes some systems “nonresponsive” to the standard regeneration procedures. This regenerative recalcitrancy hampers both the routine vegetative propagation of various plant species and the construction of genetically modified crops. This chapter addresses the basic historical background of studies on plant regeneration and discusses both the results and ideas acquired by means of classical anatomical and morphological studies in the light of our current state of information obtained using modern molecular techniques. The present knowledge of plant regeneration is also viewed in the light of studies of structure and function of the “stem cell niches” of multicellular organisms, examining their role in the ontogenesis of intact plants and in the processes of embryogenesis and organogenesis in vitro. With reference to other chapters in this book, the role of genetics for the realisation of these processes as well as the role of various regulatory factors, of both exogenous and endogenous nature – especially phytohormones – is also examined. The importance to classify regenerative processes unambiguously using exact terminology (in the context of the allied field of regenerative medicine) as a prerequisite for the formation and validation of appropriate working hypotheses is discussed. Finally, this chapter summarises the main problems of current research on regenerative processes in plants and outlines possible directions for solving problems of recalcitrant materials in the context of their use for application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aichinger E, Kornet N, Friedrich T, Laux T (2012) Plant stem cell niches. Annu Rev Plant Biol 63:615–636

    CAS  PubMed  Google Scholar 

  • Amasino R (2005) 1955: Kinetin arrives. The 50th anniversary of a new plant hormone. Plant Physiol 138:1177–1184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atta R, Laurens L, Boucheron-Dubuisson E, Guivarch A, Carnero E, Giraudat-Pautot V, Rech P, Chriqui D (2009) Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyls explants grown in vitro. Plant J 57:626–644

    CAS  PubMed  Google Scholar 

  • Banno H, Ikeda Y, Niu QW, Chua NH (2001) Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 13:2609–2618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bishopp A, Help H, El-Showk S, Weijers D, Scheres B et al (2011) A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr Biol 21:917–926

    CAS  PubMed  Google Scholar 

  • Blakeslee AF, Belling J, Farhnam ME, Bergner AD (1922) A haploid mutant in the Jimson weed, Datura stramonium. Science 55:646–647

    CAS  PubMed  Google Scholar 

  • Brand U, Grunewald M, Hobe M, Simon R (2002) Regulation of CLV3 expression by two homeobox genes in Arabidopsis. Plant Physiol 129:565–575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cary AJ, Che P, Howell SH (2002) Developmental events and shoot apical meristem gene expression pattern during shoot development in Arabidopsis thaliana. Plant J 32:867–877

    CAS  PubMed  Google Scholar 

  • Clark SE, Running MP, Meyerowitz EM (1993) CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119:397–418

    CAS  PubMed  Google Scholar 

  • Clark SE, Running MP, Meyerowitz EM (1995) CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same process as CLAVATA1. Development 121:2057–2067

    CAS  Google Scholar 

  • Cock JM, Mc Cormick S (2001) A large family of genes that share homology with CLAVATA3. Plant Physiol 126:939–942

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cocking EC (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187:927–929

    Google Scholar 

  • Cocking EC (1972) Plant cell protoplasts – isolation and development. Annu Rev Plant Physiol 23:29–50

    CAS  Google Scholar 

  • Cocking EC (2000) Plant protoplasts. In Vitro Cell Dev Biol Plant 36:77–82

    Google Scholar 

  • Darwin C (1880) The power of movement in plants. John Murray, London

    Google Scholar 

  • De Mol WE (1923) Duplication of generative nuclei by means of physiological stimuli and its significance. Genetica 5:225–272

    Google Scholar 

  • De Smet I, Vanneste S, Inzé D, Beeckman T (2006) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60:871–888

    CAS  PubMed  Google Scholar 

  • De Smet I, Lau S, Mayer U, Jürgens G (2010) Embryogenesis – the humble beginnings of plant life. Plant J 61:959–970

    PubMed  Google Scholar 

  • Dello Ioio R, Linhares FS, Sabatini S (2008a) Emerging role of cytokinin as a regulator of cellular differentiation. Curr Opin Plant Biol 11:23–27

    CAS  PubMed  Google Scholar 

  • Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M et al (2008b) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380–1384

    CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    CAS  PubMed  Google Scholar 

  • Elo A, Immanen J, Nieminen K, Helariutta Y (2009) Stem cell function during plant vascular development. Semin Cell Dev Biol 20:1097–1106

    CAS  PubMed  Google Scholar 

  • Fulcher N, Sablowski R (2009) Hypersensitivity to DNA damage in plant stem niches. Proc Natl Acad Sci U S A 106:20984–20988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gautheret RJ (1939) Sur la possibilité de réaliser la culture indefinite des tissus de tubercules de carrote. C R Hebd Seances Acad Sci 208:118–120

    Google Scholar 

  • Gautheret RJ (1985) History of plant tissue and cell culture. A personal account. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants. Vol 2: Cell growth, nutrition, cytodifferentiation, and cryopreservation. Academic, London/New York, pp 1–59

    Google Scholar 

  • George EF, Sherrington PD (1984) Plant propagation by tissue culture. Handbook and directory of commercial laboratories. Exegetics Ltd, Eversley/Basingstoke/Hants

    Google Scholar 

  • Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowitz EM (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539–3548

    CAS  PubMed  Google Scholar 

  • Guha S, Maheswari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497

    Google Scholar 

  • Guha S, Maheswari SC (1966) Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature 212:97–98

    Google Scholar 

  • Haberlandt G (1900) Über die Perzeption des geotropischen Reizes. Ber Dtsch Bot Ges 18:261–272

    Google Scholar 

  • Haberlandt G (1902) Kulturversuche mit isolierten Pflanzenzellen. Sitzungsber Akad Wiss Wien Math–Naturwiss Kl Abt J 111:69–92

    Google Scholar 

  • Harrison RG (1907) Observations on the living developing nerve fiber. Proc Soc Exp Biol Med 4:140–143

    Google Scholar 

  • He C, Chen X, Huang H, Xu L (2012) Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genet 8:1–13

    Google Scholar 

  • Hu TX, Yu M, Zhao J (2011) Comparative transcriptional analysis reveals differential gene expression between asymmetric and symmetric zygotic divisions in tobacco. PLoS One 11:e27120

    Google Scholar 

  • Hwang I, Sheen J, Muller B (2012) Cytokinin signalling network. Annu Rev Plant Biol 63:353–380

    CAS  PubMed  Google Scholar 

  • Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S et al (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845

    CAS  PubMed  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    CAS  PubMed  Google Scholar 

  • Konar RN, Thomas E, Street HE (1972) The diversity of morphogenesis in suspension cultures of Atropa belladonna L. Ann Bot 36:123–145

    Google Scholar 

  • Laimer M, Rucker W (2003) Plant tissue culture: 100 years since Gottlieb Haberlandt. Springer, Heidelberg

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation – a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    CAS  PubMed  Google Scholar 

  • Laux T, Mayer KF, Berger J, Jürgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96

    CAS  PubMed  Google Scholar 

  • Lenhardt M, Laux T (2003) Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development 130:3163–3173

    Google Scholar 

  • Li W, Liu H, Cheng ZJ, Su YH et al (2011) DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signalling. PLoS Genet 7:e1002243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loiseau JE (1959) Observation et expérimentation sur la phyllotaxie et le fonctionnement du sommet végétatif chez quelques Balsaminacées. Ann Sci Nat Bot Ser 11:201–214

    Google Scholar 

  • Mayer U, Buttner G, Jürgens G (1993) Apical-basal pattern formation in the Arabidospis embryo: study on the role of the gnom gene. Development 117:149–162

    Google Scholar 

  • Mayer KF, Shoof H, Haecker A, Lenhardt M et al (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    CAS  PubMed  Google Scholar 

  • Mitalipov S, Wolf D (2009) Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol 114:185–199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morel G, Martin C (1952) Guérison de dahlias atteints d’une maladie á virus. C R Hebd Seances Acad Sci 235:1324–1325

    CAS  PubMed  Google Scholar 

  • Morel G, Martin C (1955) Guérison de pommes de terre atteintes de maladies á virus. C R Seances Acad Agric Fr 41:472–475

    Google Scholar 

  • Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin – auxin crosstalk. Trends Plant Sci 14:558–562

    Google Scholar 

  • Muir WH, Hildebrandt AC, Riker AJ (1954) Plant tissue cultures produced from single isolated plant cells. Science 119:877–878

    Google Scholar 

  • Muir WH, Hildebrandt AC, Riker AJ (1958) The preparation, isolation and growth in culture of single cells from higher plants. Am J Bot 45:585–597

    Google Scholar 

  • Nagata T, Takebe I (1970) Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts. Planta 92:301–308

    Google Scholar 

  • Němec B (1898) O pylu petaloidních tyčinek hyacyntu (Hyacinthus orientalis). (On the pollen of hyacinthus petaloid stamens) In Czech Rozpravy České akademie císaře Františka Josefa pro vědy, slovesnost a umění. Ročník VII, třída II, číslo 17 (volume 17/II, no 17)

    Google Scholar 

  • Němec B (1900) Über die Art der Wahrnehmung der Schwerkraftreizes bei der Pflanze. Ber Dtsch Bot Ges 18:241–245

    Google Scholar 

  • Němec B (1905) Studien über Regeneration. Gebrüder Borntraeger, Berlin. http://archive.org/details/studienberdiere00nmgoog

  • Němec B (1943) Jak rostou rostliny. How the plants grow (In Czech) Aventinum Prague 1943

    Google Scholar 

  • Němec B (2002) Vzpominky I (Memoirs I – in Czech). Academia, Prague

    Google Scholar 

  • Nobécourt P (1939) Sur la pérennité et l’augmentation de volume des cultures de tissus végétaux. C R Seances Soc Biol Ses Fil 130:1270–1271

    Google Scholar 

  • Opatrný Z (1973) Androgenesis in vitro in anther cultures of chlorophyll mutants of Nicotiana tabacum. Biol Plant 15:286–289

    Google Scholar 

  • Opatrný Z, Landová B, Opatrná J (1975) The effect of pre-cultivation of tobacco tissue culture on enzymatic separation of protoplasts from various cell types. Biol Plant 17:139–141

    Google Scholar 

  • Opatrný Z, Dostál J, Martínek V (1977) Anther cultures of maize (Zea mays). Biol Plant 19:477–480

    Google Scholar 

  • Opatrný Z, Rakouský S, Schumann U, Koblitz H (1980) The role of some endogenous and exogenous factors in the isolation of protoplasts from potato cell cultures and their recovery in cell colonies. Biol Plant 22:107–116

    Google Scholar 

  • Orkin SH, Hochedlinger K (2011) Chromatin connection to pluripotency and cellular reprogramming. Cell 145:835–850

    CAS  PubMed  Google Scholar 

  • Parizot B, Laplaze L, Ricaud L, Bucheron-Dubuisson E, Bayle V, Bonke M, De Smet I, Poething SR, Helariutta Y, Haseloff J et al (2008) Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation. Plant Physiol 146:140–148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Preece JE (2003) A century of progress with vegetative plant propagation. Hortic Sci 38:1015–1025

    Google Scholar 

  • Reddy GV, Meyerowitz EM (2005) Stem cell homeostasis and growth dynamics can be uncoupled in the Arabidopsis shoot apex. Science 310:663–667

    CAS  PubMed  Google Scholar 

  • Reinert J (1958a) Untersuchungen über die Morphogenese an Gewebekulturen. Ber Deutsch Bot Ges 71:15

    Google Scholar 

  • Reinert J (1958b) Morphogenese und ihre Kontrolle an Gewebekulturen aus Karotten. Naturwissenschaften 43:344–345

    Google Scholar 

  • Reinert J (1959) Über die Kontrolle der Morphogenese und die Induktion von Adventivembryonen an Gewebekulturen aus Karotten. Planta 53:318–333

    Google Scholar 

  • Reinert J (1973) Aspects of organization – organogenesis and embryogenesis. In: Street HE (ed) Plant tissue and cell culture. Blackwell Scientific Publications, Oxford/London/Edinburg/Melbourne, pp 338–355

    Google Scholar 

  • Reinhardt D, Frenz M, Mandel T, Kuhlemeier C (2003) Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development 130:4073–4083

    CAS  PubMed  Google Scholar 

  • Sablowski R (2004) Plant and animal stem cells: conceptually similar, molecularly distinct? Trends Cell Biol 14:605–611

    CAS  PubMed  Google Scholar 

  • Sablowski R (2011) Plant stem cell niches: from signalling to execution. Curr Opin Plant Biol 14:4–9

    CAS  PubMed  Google Scholar 

  • Satina S, Blakeslee AF, Avery A (1940) Demonstration of three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am J Bot 27:895–905

    Google Scholar 

  • Schleiden MJ (1838) Beiträge zur Phytogenesis. Arch Anat Physiol Wiss Med 13:137–176

    Google Scholar 

  • Schlereth A, Moller B, Liu W, Kientz M (2010) MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464:913–916

    CAS  PubMed  Google Scholar 

  • Schrader J, Moyle R, Bhalerao R, Hertzberg M, Lundeberg J et al (2004) Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant J 40:173–187

    CAS  PubMed  Google Scholar 

  • Schumann U, Koblitz H, Opatrný Z (1980) Plant recovery from long–term callus cultures and from suspension culture-derived protoplasts of Solanum phureja. Biochem Physiol Pflanzen 175:670–675

    Google Scholar 

  • Sena G, Wang X, Liu HY, Hofhuis H, Binbaum KD (2009) Organ regeneration does not require a functional stem cell niche in plants. Nature 457:1150–1153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skoog F, Miller C (1957) Chemical regulation of growth and organ formation. Symp Soc Exp Biol 11:118–131

    CAS  PubMed  Google Scholar 

  • Somorjai IML, Lohman JU, Holstein TW, Zhao Z (2012) Stem cells: a view from roots. Biotechnol J 7:704–722

    CAS  PubMed  Google Scholar 

  • Steward FC, Mapes MO, Smith J (1958a) Growth and organized development of cultured cells. I. Growth and division in freely suspended cells. Am J Bot 45:693–703

    Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958b) Growth and organized development of cultured cells II. Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708

    Google Scholar 

  • Steward FC, Kent AE, Mapes MO (1966) The culture of free plant cells and its signification for embryology and morphogenetics. In: Moscona AA, Monroy A (eds) Current topics in developmental biology. Academic, New York, pp 243–276

    Google Scholar 

  • Stewart RN, Dermen H (1970) Determination of number and mitotic activity of shoot apical initial cells by analysis of mericlinal chimeras. Am J Bot 57:816–826

    Google Scholar 

  • Stow I (1930) Experimental studies on the formation of embryo sac–like giant pollen grain in the anther of Hyacinthus orientalis. Cytologia 1:417–439

    Google Scholar 

  • Stow I (1934) On the female tendencies of the embryo sac-like giant pollen grain of Hyacinthus orientalis. Cytologia 5:88–108

    Google Scholar 

  • Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occur via a root development pathway. Dev Cell 18:463–471

    CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, Fourth edition. Takebe I, Otsuki Y, Aoki S (1968) Isolation of tobacco mesophyll cells in intact and active state. Plant Cell Physiol 9:115–124

    Google Scholar 

  • Takebe I, Labib G, Melchers G (1971) Regeneration of whole plants from isolated protoplasts of tobacco. Naturwissenschaften 58:318–320

    Google Scholar 

  • Tanurdzic M, Vaughn MW, Jiang H, Lee TJ, Slotkin RK et al (2008) Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 6:e302

    PubMed Central  Google Scholar 

  • Taylor RL (1967) The foliar embryos of Malaxis paludosa. Can J Bot 45:1553–1556

    Google Scholar 

  • Vagera J, Havránek P, Opatrný Z (1979) Regulation of in vitro androgenesis in tobacco: relationship between concentration of iron ions and kinetin. Biochem Physiol Pflanzen 174:752–760

    CAS  Google Scholar 

  • Valvekens D, van Montagu M, Lijsebettens MV (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A 85:5536–5540

    CAS  PubMed Central  PubMed  Google Scholar 

  • van den Berg C, Willemsen V, Hage W, Weisbeek P, Scheres B (1997) Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 390:287–289

    PubMed  Google Scholar 

  • van den Graaff E, Laux T, Rensing SA (2009) The WUS homeobox-containing (WOX) protein family. Genome Biol 10:248

    PubMed Central  PubMed  Google Scholar 

  • Vasil IK (1984) Cell culture and somatic cell genetics of plants. Vol 1: Laboratory procedures and their applications. Academic, New York

    Google Scholar 

  • Vasil IK (1985) Cell culture and somatic cell genetics of plants. Vol 2: Cell growth, nutrition, cytodifferentiation, and cryopreservation. Academic, New York

    Google Scholar 

  • Vasil IK (1986) Cell culture and somatic cell genetics of plants. Vol 3: Plant regeneration and genetic variability. Academic, New York

    Google Scholar 

  • Vasil IK (2008) A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Rep 27:1423–1440

    CAS  PubMed  Google Scholar 

  • Vasil V, Hildebrandt AC (1965a) Growth and tissue formation from single isolated tobacco cells in microculture. Science 147:1454–1455

    CAS  PubMed  Google Scholar 

  • Vasil V, Hildebrandt AC (1965b) Differentiation of tobacco plants from single isolated cells in microcultures. Science 150:889–890

    CAS  PubMed  Google Scholar 

  • Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy. Trends Plant Sci 12:245–252

    CAS  PubMed  Google Scholar 

  • Weigel D, Jürgens S (2002) Stem cells that make stems. Nature 415:751–754

    CAS  PubMed  Google Scholar 

  • Weijers D, Schlereth A, Ehrismann JS, Schwank G (2006) Auxin triggers transient local signalling for cell specification in Arabidopsis embryogenesis. Dev Cell 10:265–270

    CAS  PubMed  Google Scholar 

  • White PR (1939) Potentially unlimited growth of excised plant callus in a artificial nutrient. Am J Bot 26:59–64

    Google Scholar 

  • Xiang D, Yang H, Venglad P, Cao Y, Wen R, Ren M, Stone S, Wang E, Wang H, Xiao W, Weires D, Berleth T, Laux T, Selvaraj G, Datla R (2011) POPCORN functions in the auxin pathway to regulate embryonic body plan and meristem organization in Arabidopsis. Plant Cell 23:4348–4367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yadav RK, Perales M, Grue J, Girke T et al (2011) WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev 25:2025–2030

    CAS  PubMed  Google Scholar 

  • Yarbrough JA (1932) Regeneration in Bryophyllum. Science 75:84–85

    CAS  PubMed  Google Scholar 

  • Žárský V (2012) Jan Evangelista Purkyně/Purkynje (1787–1869) and the establishment of cellular physiology – Wrocław/Breslau as a central European cradle for a new science. Protoplasma 249:1173–1179

    PubMed  Google Scholar 

  • Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohman JU (2010) Hormonal control of the shoot stem cell niche. Nature 465:1089–1092

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work has been supported by the Ministry of Education, Youth and Sport of the Czech Republic (project MSM00216208858). The author thanks David Morris for valuable comments and pronounced help in the finalization of the manuscript and both Jana Opatrná and Veronika Opatrná for technical assistance in the figure’s design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Opatrný .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Opatrný, Z. (2014). From Němec and Haberlandt to Plant Molecular Biology. In: Nick, P., Opatrny, Z. (eds) Applied Plant Cell Biology. Plant Cell Monographs, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41787-0_1

Download citation

Publish with us

Policies and ethics