Advertisement

From Business Intelligence Insights to Actions: A Methodology for Closing the Sense-and-Respond Loop in the Adaptive Enterprise

  • Soroosh Nalchigar
  • Eric Yu
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 165)

Abstract

Business Intelligence (BI) and analytics play a critical role in modern businesses by assisting them to gain insights about internal operations and the external environment and to make timely data-driven decisions. Actions resulting from these insights often require changes to various parts of the enterprise. A significant challenge in these contexts is to systematically connect and coordinate the BI-driven insights with consequent enterprise decisions and actions. This paper proposes a methodology for closing the gap between what an enterprise senses from BI-driven insights and its response actions and changes. This methodology adopts and synthesizes existing modeling frameworks, mainly i * and the Business Intelligence Model (BIM), to provide a coherent step-by-step way of connecting the sensed signals of the enterprise to subsequent responses, and hence to make BI and analytics more actionable and understandable. Applicability of the proposed methodology is illustrated in a case scenario.

Keywords

Business Intelligence Data Analytics Adaptive Enterprise Sense-and-Respond Modeling framework 

References

  1. 1.
    Barone, D., Peyton, L., Rizzolo, F., Amyot, D., Mylopoulos, J.: Towards model-based support for managing organizational transformation. In: Babin, G., Stanoevska-Slabeva, K., Kropf, P. (eds.) MCETECH 2011. LNBIP, vol. 78, pp. 17–31. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Barone, D., Topaloglou, T., Mylopoulos, J.: Business intelligence modeling in action: A hospital case study. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 502–517. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Barone, D., Yu, E., Won, J., Jiang, L., Mylopoulos, J.: Enterprise modeling for business intelligence. In: van Bommel, P., Hoppenbrouwers, S., Overbeek, S., Proper, E., Barjis, J. (eds.) PoEM 2010. LNBIP, vol. 68, pp. 31–45. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Buckley, S., Ettl, M., Lin, G., Wang, K.-Y.: Sense and respond business performance management. In: Supply Chain Management on Demand, pp. 287–311. Springer (2005)Google Scholar
  5. 5.
    Chen, H., Chiang, R.H., Storey, V.C.: Business intelligence and analytics: from big data to big impact. MIS Quarterly 36(4), 1165–1188 (2012)Google Scholar
  6. 6.
    Chowdhary, P., Bhaskaran, K., Caswell, N.S., Chang, H., Chao, T., Chen, S.-K., Dikun, M., Lei, H., Jeng, J.-J., Kapoor, S., et al.: Model driven development for business performance management. IBM Systems Journal 45(3), 587–605 (2006)CrossRefGoogle Scholar
  7. 7.
    Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional requirements in software engineering. Kluwer Academic Publishers (2000)Google Scholar
  8. 8.
    Barone, L.J.D., Mylopoulos, J., Amyot, D.: The business intelligence model: Strategic modelling. Technical report, University of Toronto (April 2010)Google Scholar
  9. 9.
    Dardenne, A., Van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Science of Computer Programming 20(1), 3–50 (1993)CrossRefGoogle Scholar
  10. 10.
    Richard Dealtry, T.: Dynamic SWOT Analysis: Developer’s Guide. Intellectual Partnerships (1992)Google Scholar
  11. 11.
    Haeckel, S.H.: Adaptive enterprise: Creating and leading sense-and-respond organizations. Harvard Business Press (1999)Google Scholar
  12. 12.
    Haeckel, S.H.: Peripheral vision: Sensing and acting on weak signals: Making meaning out of apparent noise: The need for a new managerial framework. Long Range Planning 37(2), 181–189 (2004)CrossRefGoogle Scholar
  13. 13.
    Haeckel, S.H.: Adaptive enterprise design: the sense-and-respond model. Strategy & Leadership 23(3), 6–42 (1995)Google Scholar
  14. 14.
    Horkoff, J., Barone, D., Jiang, L., Yu, E., Amyot, D., Borgida, A., Mylopoulos, J.: Strategic business modeling: representation and reasoning. In: Software & Systems Modeling, pp. 1–27 (2012)Google Scholar
  15. 15.
    Horkoff, J., Borgida, A., Mylopoulos, J., Barone, D., Jiang, L., Yu, E., Amyot, D.: Making Data Meaningful: The Business Intelligence Model and Its Formal Semantics in Description Logics. In: Meersman, R., et al. (eds.) OTM 2012, Part II. LNCS, vol. 7566, pp. 700–717. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Kaplan, R.S., et al.: Strategy maps: Converting intangible assets into tangible outcomes. Harvard Business Press (2004)Google Scholar
  17. 17.
    Kaplan, R.S., Norton, D.P., Dorf, R.C., Raitanen, M.: The balanced scorecard: translating strategy into action, vol. 4. Harvard Business School Press, Boston (1996)Google Scholar
  18. 18.
    Kapoor, S., Bhattacharya, K., Buckley, S., Chowdhary, P., Ettl, M., Katircioglu, K., Mauch, E., Phillips, L.: A technical framework for sense-and-respond business management. IBM Systems Journal 44(1), 5–24 (2005)CrossRefGoogle Scholar
  19. 19.
    Kapoor, S., Binney, B., Buckley, S., Chang, H., Chao, T., Ettl, M., Luddy, E.N., Ravi, R.K., Yang, J.: Sense-and-respond supply chain using model-driven techniques. IBM Systems Journal 46(4), 685–702 (2007)CrossRefGoogle Scholar
  20. 20.
    LaValle, S., Hopkins, M., Lesser, E., Shockley, R., Kruschwitz, N.: Analytics: The new path to value. how the smartest organizations are embedding analytics to transform insights into action. MIT Sloan Management Review (2010)Google Scholar
  21. 21.
    Maté, A., Trujillo, J.: Incorporating traceability in conceptual models for data warehouses by using MDA. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 459–466. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Maté, A., Trujillo, J.: A trace metamodel proposal based on the model driven architecture framework for the traceability of user requirements in data warehouses. In: Information Systems, pp. 753–766 (2012)Google Scholar
  23. 23.
    Nguyen, T.M., Schiefer, J., Tjoa, M.: Sense & response service architecture (saresa): an approach towards a real-time business intelligence solution and its use for a fraud detection application. In: Proceedings of the 8th ACM International Workshop on Data Warehousing and OLAP, pp. 77–86. ACM (2005)Google Scholar
  24. 24.
    Osterwalder, A., Pigneur, Y.: Business model generation: a handbook for visionaries, game changers, and challengers. Wiley (2010)Google Scholar
  25. 25.
    Panian, Z.: Actionable business intelligence: how to make it available through service-oriented architectures. In: 2nd WSEAS International Conference on Computer Engineering and Applications, CEA 2008 (2008)Google Scholar
  26. 26.
    Panian, Z.: Just-in-time business intelligence and real-time decisioning. In: Proceedings of the 9th WSEAS International Conference on Applied Informatics and Communications, AIC 2009, pp. 106–111 (2009)Google Scholar
  27. 27.
    Rizzolo, F., Kiringa, I., Pottinger, R., Wong, K.: The conceptual integration modeling framework: Abstracting from the multidimensional model. arXiv preprint arXiv:1009.0255 (2010)Google Scholar
  28. 28.
    Yu, E.: Modelling strategic relationships for process reengineering. PhD thesis, Toronto, Ont, Canada (1995)Google Scholar
  29. 29.
    Yu, E.: Towards modelling and reasoning support for early-phase requirements engineering. In: Proceedings of the Third IEEE International Symposium on Requirements Engineering, pp. 226–235. IEEE (1997)Google Scholar
  30. 30.
    Yu, E., Amyot, D., Mussbacher, G., Franch, X., Castro, J.: Practical applications of i* in industry: The state of the art (mini-tutorial). In: 21st IEEE International Requirements Engineering Conference. IEEE CS (to appear, 2013)Google Scholar
  31. 31.
    Yu, E., Deng, S., Sasmal, D.: Enterprise architecture for the adaptive enterprise – A vision paper. In: Aier, S., Ekstedt, M., Matthes, F., Proper, E., Sanz, J.L. (eds.) PRET 2012 and TEAR 2012. LNBIP, vol. 131, pp. 146–161. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  32. 32.
    Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J.: Social modeling for requirements engineering. MIT Press (2011)Google Scholar
  33. 33.
    Yu, E., Lapouchnian, A., Deng, S.: Adapting to uncertain and evolving enterprise requirements. In: Proc. 7th IEEE International Conference on Research Challenges in Information Science, pp. 155–166 (2013)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Soroosh Nalchigar
    • 1
  • Eric Yu
    • 1
  1. 1.Department of Computer ScienceUniversity of TorontoCanada

Personalised recommendations