Advertisement

Evaluating Data Quality for Integration of Data Sources

  • John Krogstie
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 165)

Abstract

Data can be looked upon as a type of model (on the instance level), as illustrated e.g., in the product models in CAD and PLM-systems. In this paper we use a specialization of a general framework for assessing quality of models to be able to evaluate the combined quality of data for the purpose of investigating potential challenges when doing data integration across different sources. A practical application of the framework from assessing the potential quality of different data sources to be used together in a collaborative work environment is used for illustrating the usefulness of the framework for this purpose. An assessment of specifically relevant knowledge sources (including the characteristics of the tools used for accessing the data) has been done. This has indicated opportunities, but also challenges when trying to integrate data from different data sources typically used by people in different roles in an organization.

Keywords

Product modelling data integration data quality 

References

  1. 1.
    Aasland, K., Blankenburg, D.: An analysis of the uses and properties of the Obeya. In: Proceedings of the 18th International ICE-Conference, Munich (2012)Google Scholar
  2. 2.
    Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Techniques. Springer (2006)Google Scholar
  3. 3.
    Batini, C., Cappiello, C., Francalanci, C., Maurino, A.: Methodologies for data quality assessment and improvement. ACM Comput. Surv. 41(3) (2009)Google Scholar
  4. 4.
    Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language: User Guide, 2nd edn. Addison-Wesley (2005)Google Scholar
  5. 5.
    Francalanci, C., Pernici, B.: View integration: A survey of current developments. Technical Report 93-053, Politecnico de Milano, Milan, Italy (1993) Google Scholar
  6. 6.
    Grudin, J.: Groupware and social dynamics: eight challenges for developers. Communications of the ACM 37(1), 92–105 (1994)CrossRefGoogle Scholar
  7. 7.
    Hermans, F.F.J.: Analyzing and Visualizing Spreadsheets. PhD thesis, Software Engineering Research Group, Delft University of Technology, The Netherlands (2012) Google Scholar
  8. 8.
    Høydalsvik, G.M., Sindre, G.: On the purpose of object-oriented analysis. In: Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA 1993), pp. 240–255. ACM Press (1993)Google Scholar
  9. 9.
    Jiang, L., Barone, D., Borgida, A., Mylopoulos, J.: Measuring and Comparing Effectiveness of Data Quality Techniques. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 171–185. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Krogstie, J.: Using Quality Function Deployment in Software Requirements Specification. Paper presented at the Fifth International Workshop on Requirements Engineering: Foundations for Software Quality (REFSQ 1999), Heidelberg, Germany, June 14-15 (1999)Google Scholar
  11. 11.
    Krogstie, J.: Evaluating UML Using a Generic Quality Framework. In: Favre, L. (ed.) UML and the Unified Process, pp. 1–22. IRM Press (2003)Google Scholar
  12. 12.
    Krogstie, J.: Integrated Goal, Data and Process Modeling: From TEMPORA to Model-Generated Work-Places. In: Johannesson, P., Søderstrøm, E. (eds.) Information Systems Engineering From Data Analysis to Process Networks, pp. 43–65. IGI (2008)Google Scholar
  13. 13.
    Krogstie, J.: Model-based development and evolution of information systems: A quality approach. Springer, London (2012)CrossRefGoogle Scholar
  14. 14.
    Krogstie, J.: Quality of Business Process Models. In: Sandkuhl, K., Seigerroth, U., Stirna, J. (eds.) PoEM 2012. LNBIP, vol. 134, pp. 76–90. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Krogstie, J.: Quality of Conceptual Data Models. In: Proceedings 14th ICISO, Stockholm Sweden (2013)Google Scholar
  16. 16.
    Krogstie, J.: A Semiotic Framework for Data Quality. In: Nurcan, S., Proper, H.A., Soffer, P., Krogstie, J., Schmidt, R., Halpin, T., Bider, I. (eds.) BPMDS 2013 and EMMSAD 2013. LNBIP, vol. 147, pp. 395–410. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Krogstie, J., Arnesen, S.: Assessing Enterprise Modeling Languages using a Generic Quality Framework. In: Krogstie, J., Siau, K., Halpin, T. (eds.) Information Modeling Methods and Methodologies. Idea Group Publishing (2004)Google Scholar
  18. 18.
    La Rocca, G.: Knowledge based engineering: Between AI and CAD. Review of a language based technology to support engineering design. Advanced Engineering Informatics 26(2), 159–179 (2012)CrossRefGoogle Scholar
  19. 19.
    Lillehagen, F., Krogstie, J.: Active Knowledge Modeling of Enterprises. Springer (2008)Google Scholar
  20. 20.
    Manyika, J., Sprague, K., Yee, L.: Using technology to improve workforce collaboration. What Matters. McKinsey Digital (October 2009)Google Scholar
  21. 21.
    Moody, D.L.: Metrics for Evaluating the Quality of Entity Relationship Models. In: Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER 1998. LNCS, vol. 1507, pp. 211–225. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Moody, D.L.: Theorethical and practical issues in evaluating the quality of concep tual models: Current state and future directions. Data and Knowledge Engineering 55, 243–276 (2005)CrossRefGoogle Scholar
  23. 23.
    Nelson, H.J., Poels, G., Genero, M., Piattini, M.: A conceptual modeling quality framework. Software Quality Journal (2011)Google Scholar
  24. 24.
    Price, R., Shanks, G.: A Semiotic Information Quality Framework. In: IFIP WG8.3 International Conference on Decision Support Systems (DSS 2004), Prato, Italy, July 1-3, pp. 658–672 (2004)Google Scholar
  25. 25.
    Price, R., Shanks, G.: A semiotic information quality framework: Development and comparative analysis. Journal of Information Technology 20(2), 88–102 (2005)CrossRefGoogle Scholar
  26. 26.
    Recker, J., Rosemann, M., Krogstie, J.: Ontology- versus pattern-based evaluation of process modeling language: A comparison. Communications of the Association for Information Systems 20, 774–799 (2007)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • John Krogstie
    • 1
  1. 1.Norwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations