A Unified Cryptographic Processor for RSA and ECC in RNS

  • Jizeng Wei
  • Wei Guo
  • Hao Liu
  • Ya Tan
Part of the Communications in Computer and Information Science book series (CCIS, volume 396)


This paper proposes a unified and programmable crypto-processor with coarse-grained reconfigurable datapath to perform either RSA or elliptic curve cryptosystems (ECC) over prime field GF(p), which uses Residue Number System (RNS) as basic arithmetic to exploit data-level parallelism and Transport Triggered Architecture to improve instruction-level parallelism. The reconfigurable datapath provides three configuration modes to accelerate the RNS Montgomery multiplication(RNSMM). An efficient RNS base, 2 n  − c i , is chosen to reduce the multiplication complexity of RNSMM. Experimental results show that the proposed processor has better tradeoff among algorithm flexibility, performance and area than other related works.


Public-Key Cryptosystems RSA ECC Residue Number System Transport Triggered Architecture Reconfigurable Architecture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hutter, M., Wenger, E.: Fast Multi-precision Multiplication for Public-key Cryptography on Embedded Microprocessors. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 459–474. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Zeng, X.-Y., et al.: A Reconfigurable Public-key Cryptography Coprocessor. In: IEEE Asia-Pacific Conf. on Advanced System Integrated Circuits (AP-ASIC 2004), pp. 172–175 (2004)Google Scholar
  3. 3.
    Mentens, N., Sakiyama, K., et al.: A Side-channel Attack Resistant Programmable PKC Coprocessor for Embedded Applications. In: Int. Conf. on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS-7), pp. 194–200 (2007)Google Scholar
  4. 4.
    Chen, J.-H., Shieh, M.-D., et al.: A High-performance Unified-field Reconfigurable Cryptographic Processor. IEEE Tran. VLSI. 18(8), 1145–1158 (2010)CrossRefGoogle Scholar
  5. 5.
    Smyth, N., et al.: An Adaptable and Scalable Asymmetric Cryptographic Processor. In: IEEE Int. Conf. on Application-Specific Systems, Architectures and Processors (ASAP-17), pp. 341–346 (2006)Google Scholar
  6. 6.
    Wang, Z., Fan, S.-Q.: Efficient Montgomery-Based Semi-Systolic Multiplier for Even-Type GNB of GF(2m). IEEE Tran. Comp. 61(3), 415–419 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Huang, M.-Q., Gaj, K., et al.: New Hardware Architectures for Montgomery Modular Multiplication Algorithm. IEEE Tran. Comp. 60(7), 923–936 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kawamura, S.-i., Koike, M., Sano, F., Shimbo, A.: Cox-rower architecture for fast parallel montgomery multiplication. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 523–538. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Schinianakis, D.M., et al.: An RNS Implementation of an Fp Elliptic Curve Point Multiplier. IEEE Tran. Circ. Syst. 56(6), 1202–1213 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Guillermin, N.: A high speed coprocessor for elliptic curve scalar multiplications over \({\mathbb{F}_p}\). In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 48–64. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Schinianakis, et al.: A RNS Montgomery Multiplication Architecture. In: IEEE Int. Symp. on Circuits and Systems (ISCAS), pp.1167–1170 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jizeng Wei
    • 1
  • Wei Guo
    • 1
  • Hao Liu
    • 1
  • Ya Tan
    • 1
  1. 1.School of Computer Science and Technology, Tianjin Key Laboratory of Cognitive Computing and ApplicationTianjin UniversityTianjinChina

Personalised recommendations