Advertisement

Tunable Negative Differential Resistance of Single-Electron Transistor Controlled by Capacitance

  • Xiaobao Chen
  • Zuocheng Xing
  • Bingcai Sui
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 396)

Abstract

The characteristic of specifically tunable negative differential resistance (NDR) of single-electron transistor (SET) controlled by capacitance which is noted accidentally in our experiment is studied in this paper. Tunable NDR of SET controlled by single source, drain and gate capacitances are simulated, respectively, then it is also done by controlling more than one capacitance. From the simulation results, it is seen that NDR of SET can be modulated by changing the value of capacitance of SET. Moreover, the cause of the phenomenon of tunable NDR of SET controlled by capacitance is given a qualitative analysis based on macro model.

Keywords

tunable negative differential resistance controlled by capacitance tunneling rate single-electron transistor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Likharev, K.K.: Single-Electron Devices and Their Applications. Proceedings of the IEEE 87(4), 606–632 (1999)CrossRefGoogle Scholar
  2. 2.
    Heij, C.P., Dixon, D.C., Hadley, P., Mooij, J.E.: Negative differential re-sistance due to single-electron switching. Appl. Phys. Lett. 74, 1042–1044 (1999)CrossRefGoogle Scholar
  3. 3.
    Lee, B.H., Jeong, Y.F.: A novel SET/MOSFET hybrid static memory cell design. IEEE Trans. Nanotechnol. 3, 377–382 (2003)CrossRefGoogle Scholar
  4. 4.
    George, H.C., Pierre, M., Jeh, X., Orlov, A.O., Sanquer, M., Snider, G.L.: Application of negative differential conductance in Al/AlOX single-electron transistors for background charge characterization. Appl. Phys. Lett. 96(4), 042114 (2010)Google Scholar
  5. 5.
    Kaasbjerg, K., Flensberg, K.: Image charge effects in single-molecule junctions: Breaking of symmetries and negative-differential resistance in a benzene single-electron transistor. Phys. Rev. B 84(11), 115457 (2011)CrossRefGoogle Scholar
  6. 6.
    Miyaji, K., Saitoh, M.: Compact Analytical Model for Room-Temperature-Operating Silicon Single-Electron Transistors With Discrete Quantum Energy Levels. IEEE Trans. Nanotechnol. 5(1), 167–173 (2006)CrossRefGoogle Scholar
  7. 7.
    Lee, S., Miyaji, K., Kobayashi, M., Hiramoto, T.: Extremely high flexibilities of Coulomb blockade and negative differential conductance oscillations in room-temperature-operating silicon single hole transistor. Appl. Phys. Lett. 92(7), 073502 (2008)Google Scholar
  8. 8.
    See, J., Dollfus, P., Galdin, S.: Theoretical Investigation of Negative Differential Conductance Regime of Silicon Nanocrystal Single-Electron Devices. IEEE Trans. on Electron Devices 53(5), 1268–1273 (2006)CrossRefGoogle Scholar
  9. 9.
    Sui, B., Fang, L., Chi, Y., Zhang, C.: Analysis of negative differential conductance of single-island single-electron transistors owing to Coulomb oscillations. IET Circuits Devices Syst. 4(5), 425–432 (2010)CrossRefGoogle Scholar
  10. 10.
    Chen, S.L., Griffin, P.B., Plummer, J.D.: Negative Differential Resistance Circuit Design and Memory Applications. IEEE Trans. on Electron Devices 56(4), 634–640 (2009)CrossRefGoogle Scholar
  11. 11.
    Ramesh, A., Park, S.Y., Berger, P.R.: 90 nm 32×32 bit Tunneling SRAM Memory Array With 0.5 ns Write Access Time, 1 ns Read Access Time and 0.5 V Operation. IEEE Trans. on Electron Devices 58(10), 2432–2445 (2011)MathSciNetGoogle Scholar
  12. 12.
    Wasshuber, C.: Computational Single-electronics. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Mahapatra, S., Ionescu, A.M.: Realization of Multiple Valued Logic and Memory by Hybrid SETMOS Architecture. IEEE Trans. Nanotechnol. 4(6), 705–714 (2005)CrossRefGoogle Scholar
  14. 14.
    Gan, K.J., Tsai, C.S., Chen, Y.W., Yeh, W.K.: Voltage-controlled multiple-valued logic design using negative differential resistance devices. Solid State Electron. 54(6), 1637–1640 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiaobao Chen
    • 1
  • Zuocheng Xing
    • 1
  • Bingcai Sui
    • 1
  1. 1.Institute of Microelectronics, School of ComputerNational University of Defense TechnologyChangshaP.R. China

Personalised recommendations