Advertisement

Empirical Analysis of Human Behavior Patterns in BBS

  • Guirong Chen
  • Wandong Cai
  • Huijie Xu
  • Jianping Wang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 396)

Abstract

Patterns of human actions have attracted increasing attention, since the quantitative understanding of human behavior has important social and economic significance. This paper focuses on behavior patterns of BBS users by conduct analysis on real data of a famous BBS in China. The results show that the reply number of posts and the post number, reply number of users both follow power-law distribution. We further confirm that the one-day reply number of all the users follows power-law distribution at the population level within a certain range. According to the inflection point of the curve, we find out 100 abnormal reply behaviors. Further analysis to the time and space characteristics of the abnormal reply behaviors, we identify 8 artificial hot posts. We find that they have high time similarity, content similarity, structure similarity and show significant signs of human intervention. We infer that the 8 hot posts are the results of network hypes made by online water army. Our findings are meaningful to network public opinion monitoring and may enable a fast detecting of network hypes and online water army.

Keywords

Human dynamics User behavior Power-law distribution Network hypes Online water army 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barabási, A.L.: The origin of bursts and heavy tails in human dynamics. Nature 435, 207–211 (2005)CrossRefGoogle Scholar
  2. 2.
    Oliveira, J.G., Barabási, A.L.: Human dynamics: Darwin and Einstein correspondence patterns. Nature 437, 1251–1251 (2005)CrossRefGoogle Scholar
  3. 3.
    Candia, J., González, M.C., Wang, P.: Uncovering individual and collective human dynamics from mobile phone records. J. Phys. A: Math. Theor. 41, 224015-1–224015-11 (2008)Google Scholar
  4. 4.
    Jiang, Z.Q., Xie, W.J., Li, M.X.: Calling patterns in human communication dynamics. J. PLNA 110, 1600–1605 (2013)Google Scholar
  5. 5.
    Zhao, Z.D., Xia, H., Shang, M.S., Zhou, T.: Empirical analysis on the human dynamics of a large-scale short message communication system. Chin. Phys. Lett. 28, 068901-1–068901-3 (2011)Google Scholar
  6. 6.
    Hong, W., Han, X.P., Zhou, T., Wang, B.H.: Heavy-tailed statistics in short-message communication. Chin. Phys. Lett. 26, 028902-1–028902-3 (2009)Google Scholar
  7. 7.
    Fan, C., Guo, J.L., Zha, Y.L.: Fractal analysis on human dynamics of library loans. Physica A: Statistical Mechanics and its Applications 391, 6617–6625 (2012)CrossRefGoogle Scholar
  8. 8.
    Zhou, T., Kiet, H.A.T., Kim, B.J.: Role of activity in human dynamics. EPL. 82, 28002-p1–28002-p5 (2008)Google Scholar
  9. 9.
    Dezsö, Z., Almaas, E., Lukács, A.: Dynamics of information access on the web. Phys. Rev. E. 73, 066132-1–066132-6 (2006)Google Scholar
  10. 10.
    Zhao, Z.D., Zhou, T.: Empirical analysis of online human dynamics. Physica A: Statistical Mechanics and its Applications 391, 3308–3315 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zhao, Z.D., Cai, S.M., Huang, J.: Scaling behavior of online human activity. EPL. 100, 48004-p1–48004-p6 (2012)Google Scholar
  12. 12.
    Xiong, F., Liu, Y.: Empirical Analysis and Modeling of Users’ Topic Interests in Online Forums. PloS One. 7, e50912-1– e50912-7 (2012)Google Scholar
  13. 13.
    Bu, Z., Xia, Z., Wang, J.: A sock puppet detection algorithm on virtual spaces. Knowledge-Based Systems. 37, 366–377 (2013)Google Scholar
  14. 14.
    Zheng, X., Lai, Y.M., Chow, K.P.: Sockpuppet detection in online discussion forums. In: 2011 Seventh International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 374–377. IEEE (2011)Google Scholar
  15. 15.
    http://en.wikipedia.org/wiki/Sockpuppet_(Internet)Google Scholar
  16. 16.
    Si, X.M., Liu, Y.: Empirical analysis of interpersonal interacting behavior in virtual community. Acta Phys. Sin. 60, 859–866 (2011)Google Scholar
  17. 17.
    Ding, F., Liu, Y., Cheng, H.: Read and reply behaviors in a BBS social network. Advanced Computer Control (ICACC) 4, 571–576 (2010)Google Scholar
  18. 18.
    Yu, J., Hu, Y., Yu, M.: Analyzing netizens’ view and reply behaviors on the forum. Physica A: Statistical Mechanics and its Applications 389, 3267–3273 (2010)CrossRefGoogle Scholar
  19. 19.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Review 51, 661–703 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Guirong Chen
    • 1
  • Wandong Cai
    • 1
  • Huijie Xu
    • 1
  • Jianping Wang
    • 1
  1. 1.School of Computer ScienceNorthwestern Polytechnical UniversityXi,anPeople’s Republic of China

Personalised recommendations