Effective Location-Based Image Retrieval Based on Geo-Tags and Visual Features

  • Yi ZhuangEmail author
  • Guochang Jiang
  • Jue Ding
  • Nan Jiang
  • Gankun Zhu
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 387)


With emergence and development of Web2.0 and location-based technologies, location-based image retrieval and indexing has been increasingly paid much attention. In the state-of-the-art retrieval methods, geo-tag and visual feature-based image retrieval has not been touched so far. In this paper, we present an efficient location-based image retrieval method by conducting the search over combined geotag- and visual-feature spaces. In this retrieval method, a cost-based query optimization scheme is proposed to optimize the query processing. Different from conventional image retrieval methods, our proposed retrieval algorithm combines the above two features to obtain an uniform measure. Comprehensive experiments are conducted to testify the effectiveness and efficiency of our proposed retrieval and indexing methods respectively.


Social image High-dimensional indexing Probabilistic retrieval 


  1. 1.
    Zhang, J., Hallquist, A., Liang, E., Zakhor, A.: Location-based image retrieval for Urban environment. In: Proceedings of ICIP (2011)Google Scholar
  2. 2.
    Kawakubo, H., Yanai, K.: GeoVisualRank: a ranking method of geotagged images considering visual similarity and geo-location proximity. In: Proceedings of the 20th International Conference on World Wide Web, pp. 69−70Google Scholar
  3. 3.
    Flicker, M., Sawhney, H., Niblack, W., Ashley, J.: Query by image and video content: the QBIC system. IEEE Comput. 28(9), 23–32 (1995)CrossRefGoogle Scholar
  4. 4.
    Virage Inc. (2005)
  5. 5.
    Pentland, A., Picard, R.W., Sclarof, S.: Photobook: content-based manipulation of image databases. Int. J. Comput. Vision 18(3), 233–254 (1996)CrossRefGoogle Scholar
  6. 6.
    Mehrotra, S., Rui, Y., Chakrabarti, K., Ortega, M., Huang, T.S.: Multimedia analysis and retrieval system. In: Proceedings of the 3rd International Workshop on Multimedia Information Systems, Como (1997)Google Scholar
  7. 7.
    Cui, B., Tung, A.K.H, Zhang, C., Zhao, Z.: Multiple feature fusion for social media applications. In: SIGMOD Conference, pp. 435−446 (2010)Google Scholar
  8. 8.
    Zhuang, Y., Liu, Y., Wu, F., Zhang, Y., Shao, J.: Hypergraph spectral hashing for similarity search of social image. In: ACM Multimedia, pp. 1457−1460 (2011)Google Scholar
  9. 9.
    Siersdorfer, S., Minack, E., Deng, F., Hare, J.S.: Analyzing and predicting sentiment of images on the social web. In: ACM Multimedia, pp. 715−718 (2010)Google Scholar
  10. 10.
    Siersdorfer, S., Sizov, S.: Social recommender systems for web 2.0 folksonomies. In: Hypertext, pp. 261−270 (2009)Google Scholar
  11. 11.
    Jin, X., Gallagher, A.C., Cao, L., Luo, J., Han, J.: The wisdom of social multimedia: using flickr for prediction and forecast. In: ACM Multimedia, pp. 1235−1244 (2010)Google Scholar
  12. 12.
    Bu, J., Tan, S., Chen, C., et al.: Music recommendation by unified hypergraph: combining social media information and music content. In: ACM Multimedia, pp. 391−400 (2010)Google Scholar
  13. 13.
  14. 14.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yi Zhuang
    • 1
    Email author
  • Guochang Jiang
    • 2
  • Jue Ding
    • 3
  • Nan Jiang
    • 4
  • Gankun Zhu
    • 2
  1. 1.College of Computer and Information EngineeringZhejiang Gongshang UniversityHangzhouPeople’s Republic of China
  2. 2.The Second Institute of OceanographySOAHangzhouPeople’s Republic of China
  3. 3.Zhejiang Economic and Trade PolytechnicHangzhouPeople’s Republic of China
  4. 4.Hangzhou First People’s HospitalHangzhouPeople’s Republic of China

Personalised recommendations