Skip to main content

Introduction to Sodium Channels

  • Chapter
  • First Online:
Voltage Gated Sodium Channels

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 221))

Abstract

Voltage-gated sodium channels (VGSCs) are present in many tissue types within the human body including both cardiac and neuronal tissues. Like other channels, VGSCs activate, deactivate, and inactivate in response to changes in membrane potential. VGSCs also have a similar structure to other channels: 24 transmembrane segments arranged into four domains that surround a central pore. The structure and electrical activity of these channels allows them to create and respond to electrical signals in the body. Because of their distribution throughout the body, VGSCs are implicated in a variety of diseases including epilepsy, cardiac arrhythmias, and neuropathic pain. As such the study of these channels is essential. This brief review will introduce sodium channel structure, physiology, and pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed CM, Ware DH, Lee SC, Patten CD, Ferrer-Montiel AV, Schinder AF, McPherson JD, Wagner-McPherson CB, Wasmuth JJ, Evans GA (1992) Primary structure, chromosomal localization, and functional expression of a voltage-gated sodium channel from human brain. Proc Natl Acad Sci U S A 89(17):8220–8224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Capes DL, Goldschen-Ohm MP, Arcisio-Miranda M, Bezanilla F, Chanda B (2013) Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels. J Gen Physiol 142(2):101–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Catterall WA, Goldin AL, Waxman SG (2005) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57(4):397–409

    Article  CAS  PubMed  Google Scholar 

  • Egri C, Vilin YY, Ruben PC (2012) A thermoprotective role of the sodium channel beta1 subunit is lost with the beta1 (C121W) mutation. Epilepsia 53(3):494–505

    Article  CAS  PubMed  Google Scholar 

  • Favre I, Moczydlowski E, Schild L (1996) On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel. Biophys J 71(6):3110–3125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldin AL (1999) Diversity of mammalian voltage-gated sodium channels. Ann N Y Acad Sci 868:38–50

    Article  CAS  PubMed  Google Scholar 

  • Goldin AL (2003) Mechanisms of sodium channel inactivation. Curr Opin Neurobiol 13(3):284–290

    Article  CAS  PubMed  Google Scholar 

  • Heinemann SH, Terlau H, Stuhmer W, Imoto K, Numa S (1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356(6368):441–443

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lipkind GM, Fozzard HA (2008) Voltage-gated Na channel selectivity: the role of the conserved domain III lysine residue. J Gen Physiol 131(6):523–529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCusker EC, Bagneris C, Naylor CE, Cole AR, D’Avanzo N, Nichols CG, Wallace BA (2012) Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat Commun 3:1102

    Article  PubMed Central  PubMed  Google Scholar 

  • Meisler MH, Kearney JA (2005) Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest 115(8):2010–2017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475(7356):353–358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Payandeh J, Gamal El-Din TM, Scheuer T, Zheng N, Catterall WA (2012) Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486(7401):135–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richmond JE, Featherstone DE, Hartmann HA, Ruben PC (1998) Slow inactivation in human cardiac sodium channels. Biophys J 74(6):2945–2952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vilin YY, Peters CH, Ruben PC (2012) Acidosis differentially modulates inactivation in na(v)1.2, na(v)1.4, and na(v)1.5 channels. Front Pharmacol 3:109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang K, Yuan Y, Kharche S, Zhang H (2009) The E1784K mutation in SCN5A and phenotypic overlap of type 3 long QT syndrome and Brugada syndrome: a simulation study. Comput Cardiol 36:301

    Google Scholar 

  • Watanabe E, Fujikawa A, Matsunaga H, Yasoshima Y, Sako N, Yamamoto T, Saegusa C, Noda M (2000) Nav2/NaG channel is involved in control of salt-intake behavior in the CNS. J Neurosci 20(20):7743–7751

    CAS  PubMed  Google Scholar 

  • West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992) A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci U S A 89(22):10910–10914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin H. Peters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peters, C.H., Ruben, P.C. (2014). Introduction to Sodium Channels. In: Ruben, P. (eds) Voltage Gated Sodium Channels. Handbook of Experimental Pharmacology, vol 221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41588-3_1

Download citation

Publish with us

Policies and ethics