Advertisement

Agda Meets Accelerate

  • Peter ThiemannEmail author
  • Manuel M. T. Chakravarty
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8241)

Abstract

Embedded languages in Haskell benefit from a range of type extensions, such as type families, that are subsumed by dependent types. However, even with those type extensions, embedded languages for data parallel programming lack desirable static guarantees, such as static bounds checks in indexing and collective permutation operations.

This observation raises the question whether an embedded language for data parallel programming would benefit from fully-fledged dependent types, such as those available in Agda. We explored that question by designing and implementing an Agda frontend to Accelerate, a Haskell-embedded language for data parallel programming aimed at GPUs. We discuss the potential of dependent types in this domain, describe some of the limitations that we encountered, and share some insights from our preliminary implementation.

Keywords

Programming with dependent types Data parallelism 

References

  1. 1.
    Bove, A., Dybjer, P., Norell, U.: A brief overview of agda - a functional language with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Catanzaro, B., Garland, M., Keutzer, K.: Copperhead: Compiling an embedded data parallel language. Technical Report UCB/EECS-2010-124. University of California, Berkeley (2010)Google Scholar
  3. 3.
    Chakravarty, M.M.T., Keller, G., Lee, S., McDonell, T.L., Grover, V.: Accelerating Haskell array codes with multicore GPUs. In: Carro, M., Reppy, J.H. (eds.) Workshop on Declarative Aspects of Multicore Programming, DAMP 2011, Austin, TX, USA, January 2011, pp. 3–14. ACM (2011)Google Scholar
  4. 4.
    Chakravarty, M.M.T., Keller, G., Peyton Jones, S.: Associated type synonyms. In: Pierce, B.C. (ed.) Proceedings International Conference on Functional Programming 2005, Tallinn, Estonia, September 2005, pp. 241–253. ACM Press, New York (2005)Google Scholar
  5. 5.
    Devriese, D., Piessens, F.: On the bright side of type classes: Instance arguments in Agda. In: Danvy, O. (ed.) Proceedings International Conference on Functional Programming 2011, Tokyo, Japan, September 2011, pp. 143–155. ACM Press, New York (2011)Google Scholar
  6. 6.
    Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)CrossRefGoogle Scholar
  7. 7.
    Jones, S.L.P., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-based type inference for GADTs. In: Lawall, J. (ed.) ICFP, Portland, Oregon, USA, September 2006, pp. 50–61. ACM Press, New York (2006)Google Scholar
  8. 8.
    Keller, G., Chakravarty, M.M., Leshchinskiy, R., Peyton Jones, S., Lippmeier, B.: Regular, shape-polymorphic, parallel arrays in Haskell. In: Proceedings of the 15th ACM SIGPLAN International Conference on Functional Programming, ICFP 2010. ACM (2010)Google Scholar
  9. 9.
    Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Napoli (1984)zbMATHGoogle Scholar
  10. 10.
    Norell, U.: Dependently typed programming in Agda. In: Koopman, P., Plasmeijer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 230–266. Springer, Heidelberg (2009)Google Scholar
  11. 11.
    Peebles, D.: A dependently typed model of the Repa library in Agda. https://github.com/copumpkin/derpa (2011)
  12. 12.
    Rose, J.R., et al.: C\(^*\): An extended c language for data parallel programming. In: Proceedings of the Second International Conference on Supercomputing, pp. 2–16 (1987)Google Scholar
  13. 13.
    Saraswat, V.: Report on the programming language X10. http://dist.codehaus.org/x10/documentation/languagespec/x10-200.pdf. October 2009. Version 2.0
  14. 14.
    Schrijvers, T., Peyton Jones, S.L., Chakravarty, M.M.T., Sulzmann, M.: Type checking with open type functions. In: Thiemann, P. (ed.) Proceedings International Conference on Functional Programming 2008, Victoria, BC, Canada, October 2008, pp. 51–62. ACM Press, New York (2008)Google Scholar
  15. 15.
    Swierstra, W.: More dependent types for distributed arrays. Higher-Order Symbolic Comput., pp. 1–18 (2010)Google Scholar
  16. 16.
    Swierstra, W., Altenkirch, T.: Dependent types for distributed arrays. In: Trends in Functional Programming, vol. 9 (2008)Google Scholar
  17. 17.
    Tarditi, D., Puri, S., Oglesby, J.: Accelerator: using data parallelism to program GPUs for general-purpose uses. In: ASPLOS-XII: Proceedings of the 12th International Conference on Architectural Support for Programming Language and Operating Systems, pp. 325–335. ACM (2006)Google Scholar
  18. 18.
    Xi, H.: Dependent ML: An approach to practical programming with dependent types. J. Funct. Program. 12(2) (2007)Google Scholar
  19. 19.
    Yorgey, B.A., Weirich, S., Cretin, J., Jones, S.L.P., Vytiniotis, D., Magalhães, J.P.: Giving Haskell a promotion. In: Pierce, B.C. (ed.) Proceedings of TLDI 2012, Philadelphia, PA, USA, January 2012, pp. 53–66. ACM (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of FreiburgFreiburgGermany
  2. 2.University of New South WalesSydneyAustralia

Personalised recommendations