Skip to main content

Abstract

For a power-on gear shift sequence of AMTs, shift shock may be caused by the operations of clutch disengagement (together with the engine torque reduction) and clutch engagement (together with the engine torque restoration). In this chapter, the engagement control is discussed, while the clutch disengagement control was addressed in Chap. 6. After the dynamics and control problems of gear upshift and downshift of an AMT are described in detail, model predictive control (MPC) is adopted to address the challenging control requirements. It is demonstrated through simulations that a very short torque interruption time can be achieved, while the shift shock is kept small enough.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This chapter uses the content of [16], with permission from Inderscience Enterprises Ltd.

References

  1. Allgöwer F, Badgwell TA, Qin JS, Rawlings JB, Wright SJ (1999) Nonlinear predictive control and moving horizon estimation—an introductory overview. In: Frank PM (ed) Advances in control, highlights of ECC’99. Springer, Berlin, pp 391–449

    Chapter  Google Scholar 

  2. Balluchi A, Benvenuti L, Ferrari A, Sangiovanni-Vincentelli AL (2006) Hybrid systems in automotive electronics design. Int J Control 79(5):375–394

    Article  MATH  MathSciNet  Google Scholar 

  3. Bemporad A, Morari M (1999) Control of systems integrating logic, dynamics, and constraints. Automatica 35:407–427

    Article  MATH  MathSciNet  Google Scholar 

  4. Bemporad A, Borrelli F, Glielmo L, Vasca F (2001) Hybrid control of dry clutch engagement. In: Proceedings of the European control conference, Porto, Portugal

    Google Scholar 

  5. Bemporad A, Morari M, Dua V, Pistikopoulos EN (2002) The explicit linear quadratic regulator for constrained systems. Automatica 38(1):3–20

    Article  MATH  MathSciNet  Google Scholar 

  6. Bengtsson J, Strandh P, Johansson R (2006) Multi-output control of a heavy duty HCCI engine using variable valve actuation and model predictive control. SAE technical paper 2006-01-0873

    Google Scholar 

  7. Cairano SD, Yanakiev D, Bemporad A, Kolmanovsky IV, Hrovat D (2008) An MPC design flow for automotive control and applications to idle speed regulation. In: Proceedings of the 47th IEEE conference on decision and control, pp 5692–5697

    Google Scholar 

  8. Chen H, Scherer CW (2006) Moving horizon H control with performance adaptation for constrained linear systems. Automatica 42(6):1033–1040

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen H, Xu F, Xi Y (2012) Field programmable gate array/system on a programmable chip-based implementation of model predictive controller. IET Control Theory Appl 6(8):1055–1063

    Article  MathSciNet  Google Scholar 

  10. Cho D (1987) Nonlinear control methods for automotive powertrain systems. PhD Thesis, MIT

    Google Scholar 

  11. Dolcini P, Wit CC, Béchart H (2008) Lurch avoidance strategy and its implementation in amt vehicles. Mechatronics 18(5–6):289–300

    Article  Google Scholar 

  12. Dourra H, Mourtada A (2008) Adaptive nth order lookup table used in transmission double swap shift control. SAE technical paper 2008-01-0538

    Google Scholar 

  13. Fredriksson J, Egardt B (2003) Active engine control for gearshifting in automated manual transmissions. Int J Veh Des 32(3/4):216–230

    Article  Google Scholar 

  14. Gao B-Z, Chen H, Sanada K, Hu Y-F (2011) Design of clutch slip controller for automatic transmission using backstepping. IEEE/ASME Trans Mechatron 16(3):498–508

    Article  Google Scholar 

  15. Gao B-Z, Lei Y-L, Ge A-L, Chen H, Sanada K (2011) Observer-based clutch disengagement control during gear shift process of automated manual transmission. Veh Syst Dyn 49(5):685–701

    Article  Google Scholar 

  16. Gao B-Z, Lu X-H, Chen H, Lu X-T, Li J (2013) Dynamics and control of gear upshift in automated manual transmissions. Int J Veh Des 63(1):61–83

    Article  Google Scholar 

  17. Ge A (1993) Theory and design of automatic transmissions. China Machine Press, Beijing. In Chinese

    Google Scholar 

  18. Glielmo L, Vasca F (2000) Optimal control of dry clutch engagement. SAE technical paper 2000-01-0837

    Google Scholar 

  19. Glielmo L, Iannelli L, Vacca V, Vasca F (2006) Gearshift control for automated manual transmissions. IEEE/ASME Trans Mechatron 11(1):17–26

    Article  Google Scholar 

  20. Goetz M, Levesley MC, Crolla DA (2005) Dynamics and control of gearshifts on twin-clutch transmissions. Proc Inst Mech Eng, Part D, J Automob EngMech 219(8):951–963

    Article  Google Scholar 

  21. Guo HY, Chen H, Xu F, Wang F, Lu GY (2013) Implementation of ekf for vehicle velocities estimation on fpga. IEEE Trans Ind Electron 60(9):3823–3839

    Article  Google Scholar 

  22. Hahn JO, Lee KI (2002) Nonlinear robust control of torque converter clutch slip system for passenger vehicles using advanced torque estimation algorithms. Veh Syst Dyn 37(3):175–192

    Article  Google Scholar 

  23. Haj-Fraj A, Pfeiffer F (2002) A model based approach for the optimisation of gearshifting in automatic transmissions. Int J Veh Des 28(1–3):171–188

    Article  Google Scholar 

  24. Heijden ACVD, Serrarens AFA, Camlibel MK, Nijmeijer H (2007) Hybrid optimal control of dry clutch engagement. Int J Control 80(11):1717–1728

    Article  MATH  Google Scholar 

  25. Kim DH, Yang KJ, Hong KS, Hahn JO, Lee KI (2003) Smooth shift control of automatic transmissions using a robust adaptive scheme with intelligent supervision. Int J Veh Des 32(3/4):250–272

    Article  Google Scholar 

  26. Kulkarni M, Shim T, Zhang Y (2007) Shift dynamics and control of dual-clutch transmissions. Mech Mach Theory 42(2):168–182

    Article  MATH  Google Scholar 

  27. Lei YL, Gao BZ, Tian H, Ge AL, Yan S (2005) Throttle control strategies in the process of integrated powertrain control. Chin J Mech Eng 18(3):429–433 (English Edition)

    Article  Google Scholar 

  28. Ling KV, Yue SP, Maciejowski JM (2006) A FPGA implementation of model predictive control. In: Proceedings of American control conference, Minnesota, USA, pp 1930–1935

    Google Scholar 

  29. Mayne DQ, Rawlings JB, Rao CV, Scokaert POM (2000) Constrained model predictive control: stability and optimality. Automatica 36(6):789–814

    Article  MATH  MathSciNet  Google Scholar 

  30. Pettersson M (1997) Driveline modeling and control. PhD Thesis, Linköping University, Sweden

    Google Scholar 

  31. Pettersson M, Nielsen L (2000) Gear shifting by engine control. IEEE Trans Control Syst Technol 8(3):495–507

    Article  Google Scholar 

  32. Pettersson M, Nielsen L (2003) Diesel engine speed control with handling of driveline resonances. Control Eng Pract 11(3):319–328

    Article  Google Scholar 

  33. Sanada K, Kitagawa A (1998) A study of two-degree-of-freedom control of rotating speed in an automatic transmission, considering modeling errors of a hydraulic system. Control Eng Pract 6:1125–1132

    Article  Google Scholar 

  34. Tanaka H, Wada H (1995) Fuzzy control of engagement for automated manual transmission. Veh Syst Dyn 24(4/5):365–376

    Article  Google Scholar 

  35. Vasca F, Iannelli L, Senatore A, Reale G (2011) Torque transmissibility assessment for automotive dry-clutch engagement. IEEE/ASME Trans Mechatron 16(3):564–573

    Article  Google Scholar 

  36. Vouzis PD, Bleris LG, Arnold MG, Kothare MV (2009) A system on-a-chip implementation for embedded real-time model predictive control. IEEE Trans Control Syst Technol 17(5):1006–1016

    Article  Google Scholar 

  37. Wheals JC, Crewe C, Ramsbottom M, Rook S, Westby M (2002) Automated manual transmissions—a European survey and proposed quality shift metrics. SAE technical paper 2002-01-0929

    Google Scholar 

  38. Yokoyama M (2008) Sliding mode control for automatic transmission systems. J Jpn Fluid Power Syst Soc 39(1):34–38. In Japanese

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, H., Gao, B. (2014). Clutch Engagement Control of AMT Gear Shift. In: Nonlinear Estimation and Control of Automotive Drivetrains. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41572-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41572-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41571-5

  • Online ISBN: 978-3-642-41572-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics