Skip to main content

Advanced MRI of Cartilage and Subchondral Bone in Osteoarthritis

  • Chapter
  • First Online:
Advanced Computational Approaches to Biomedical Engineering
  • 1494 Accesses

Abstract

Osteoarthritis is a degenerative joint disorder that predominantly affects cartilage and subchondral bone. Magnetic resonance imaging (MRI) provides a noninvasive means to detect pathologic alterations in these two tissues. In this chapter, we provide an overview of MRI techniques to evaluate cartilage and subchondral bone macrostructure, and cartilage biochemical composition [T1rho mapping, T2 mapping, 23Na MRI, glycosaminoglycan chemical exchange saturation transfer, diffusion tensor imaging (DTI)]. The ability to detect early and short-term changes in the knee joint in vivo will allow new insight into the pathogenesis of osteoarthritis and may permit early diagnosis of osteoarthritis in at-risk subjects. This knowledge and capability should ultimately accelerate the discovery and testing of novel therapies to treat osteoarthritis, a disease which represents an enormous socioeconomic and health burden on society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pleis, J.R., Lethbridge-Cejku, M.: Summary health statistics for U.S. adults: National Health Interview Survey, 2005. Vital and health statistics. Series 10, Data from the National Health Survey, 1 (2006)

    Google Scholar 

  2. Yelin, E., et al.: Medical care expenditures and earnings losses among persons with arthritis and other rheumatic conditions in 2003, and comparisons with 1997. Arthritis Rheum. 56, 1397 (2007)

    Article  Google Scholar 

  3. Burstein, D., Gray, M., Mosher, T., Dardzinski, B.: Measures of molecular composition and structure in osteoarthritis. Radiol. Clin. North Am. 47, 675 (2009)

    Article  Google Scholar 

  4. Wheaton, A.J., et al.: Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging – feasibility study. Radiology 231, 900 (2004)

    Article  Google Scholar 

  5. Burr, D.B.: Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarthritis Cartilage 12(Suppl A), S20 (2004)

    Article  Google Scholar 

  6. Wehrli, F.W.: Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J. Magn. Reson. Imaging 25, 390 (2007)

    Article  Google Scholar 

  7. Felson, D.T., Neogi, T.: Osteoarthritis: is it a disease of cartilage or of bone? Arthritis Rheum. 50, 341 (2004)

    Article  Google Scholar 

  8. Resnick, D., Kang, H.S., Pretterklieber, M.L.: Internal Derangements of Joints, 2nd edn. Saunders/Elsevier, Philadelphia (2006). pp. 2 v. (xvi, 2284, liv p.)

    Google Scholar 

  9. Eckstein, F., Burstein, D., Link, T.M.: Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed. 19, 822 (2006)

    Article  Google Scholar 

  10. Kamibayashi, L., Wyss, U.P., Cooke, T.D., Zee, B.: Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. Bone 17, 27 (1995)

    Article  Google Scholar 

  11. Bobinac, D., Spanjol, J., Zoricic, S., Maric, I.: Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. Bone 32, 284 (2003)

    Article  Google Scholar 

  12. Layton, M.W., et al.: Examination of subchondral bone architecture in experimental osteoarthritis by microscopic computed axial tomography. Arthritis Rheum. 31, 1400 (1988)

    Article  Google Scholar 

  13. Chappard, C., et al.: Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study. Osteoarthritis Cartilage 14, 215 (2006)

    Article  Google Scholar 

  14. Recht, M.P., Piraino, D.W., Paletta, G.A., Schils, J.P., Belhobek, G.H.: Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 198, 209 (1996)

    Google Scholar 

  15. Disler, D.G., McCauley, T.R., Wirth, C.R., Fuchs, M.D.: Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy. AJR Am. J. Roentgenol. 165, 377 (1995)

    Article  Google Scholar 

  16. Potter, H.G., Linklater, J.M., Allen, A.A., Hannafin, J.A., Haas, S.B.: Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J. Bone Joint Surg. Am. 80, 1276 (1998)

    Google Scholar 

  17. Bredella, M.A., et al.: Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR Am. J. Roentgenol. 172, 1073 (1999)

    Article  Google Scholar 

  18. Peterfy, C.G., et al.: Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 12, 177 (2004)

    Article  Google Scholar 

  19. Frobell, R.B.: Change in cartilage thickness, posttraumatic bone marrow lesions, and joint fluid volumes after acute ACL disruption: a two-year prospective MRI study of sixty-one subjects. J. Bone Joint Surg. Am. 93, 1096 (2011)

    Article  Google Scholar 

  20. Baranyay, F.J., et al.: Association of bone marrow lesions with knee structures and risk factors for bone marrow lesions in the knees of clinically healthy, community-based adults. Semin. Arthritis Rheum. 37, 112 (2007)

    Article  Google Scholar 

  21. Driban, J.B., et al.: Quantitative bone marrow lesion size in osteoarthritic knees correlates with cartilage damage and predicts longitudinal cartilage loss. BMC Musculoskelet. Disord. 12, 217 (2011)

    Article  Google Scholar 

  22. Wluka, A.E., et al.: Bone marrow lesions predict increase in knee cartilage defects and loss of cartilage volume in middle-aged women without knee pain over 2 years. Ann. Rheum. Dis. 68, 850 (2009)

    Article  Google Scholar 

  23. Hunter, D.J., et al.: Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum. 54, 1529 (2006)

    Article  Google Scholar 

  24. Torres, L., et al.: The relationship between specific tissue lesions and pain severity in persons with knee osteoarthritis. Osteoarthritis Cartilage 14, 1033 (2006)

    Article  Google Scholar 

  25. Zhang, Y., et al.: Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum. 63, 691 (2011)

    Article  Google Scholar 

  26. Dardzinski, B.J., Mosher, T.J., Li, S., Van Slyke, M.A., Smith, M.B.: Spatial variation of T2 in human articular cartilage. Radiology 205, 546 (1997)

    Google Scholar 

  27. Mosher, T.J., Dardzinski, B.J.: Cartilage MRI T2 relaxation time mapping: overview and applications. Semin. Musculoskelet. Radiol. 8, 355 (2004)

    Article  Google Scholar 

  28. Nieminen, M.T., et al.: T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn. Reson. Med. 46, 487 (2001)

    Article  Google Scholar 

  29. Maroudas, A.I.: Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260, 808 (1976)

    Article  Google Scholar 

  30. Venn, M., Maroudas, A.: Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann. Rheum. Dis. 36, 121 (1977)

    Article  Google Scholar 

  31. Maroudas, A., Venn, M.: Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. II. Swelling. Ann. Rheum. Dis. 36, 399 (1977)

    Article  Google Scholar 

  32. Mosher, T.J., Dardzinski, B.J., Smith, M.B.: Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2 – preliminary findings at 3 T. Radiology 214, 259 (2000)

    Article  Google Scholar 

  33. Li, X., et al.: In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage 15, 789 (2007)

    Article  Google Scholar 

  34. Peterfy, C.G., Schneider, E., Nevitt, M.: The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 16, 1433 (2008)

    Article  Google Scholar 

  35. Li, X., et al.: Spatial distribution and relationship of T1rho and T2 relaxation times in knee cartilage with osteoarthritis. Magn. Reson. Med. 61, 1310 (2009)

    Article  Google Scholar 

  36. Xia, Y., Moody, J.B., Alhadlaq, H.: Orientational dependence of T2 relaxation in articular cartilage: a microscopic MRI (microMRI) study. Magn. Reson. Med. 48, 460 (2002)

    Article  Google Scholar 

  37. Nishii, T., Kuroda, K., Matsuoka, Y., Sahara, T., Yoshikawa, H.: Change in knee cartilage T2 in response to mechanical loading. J. Magn. Reson. Imaging 28, 175 (2008)

    Article  Google Scholar 

  38. Shiomi, T., et al.: Loading and knee alignment have significant influence on cartilage MRI T2 in porcine knee joints. Osteoarthritis Cartilage 18, 902 (2010)

    Article  Google Scholar 

  39. Prasad, A.P., Nardo, L., Schooler, J., Joseph, G., Link, T.M.: T(1rho) and T(2) relaxation times predict progression of knee osteoarthritis. Osteoarthritis Cartilage 21(1), 69–76 (2013)

    Article  Google Scholar 

  40. Joseph, G.B., et al.: Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years – data from the osteoarthritis initiative. Osteoarthritis Cartilage 20, 727 (2012)

    Article  Google Scholar 

  41. Borthakur, A., et al.: Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed. 19, 781 (2006)

    Article  Google Scholar 

  42. Regatte, R.R., Akella, S.V., Lonner, J.H., Kneeland, J.B., Reddy, R.: T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J. Magn. Reson. Imaging 23, 547 (2006)

    Article  Google Scholar 

  43. Akella, S.V., et al.: Proteoglycan-induced changes in T1rho-relaxation of articular cartilage at 4T. Magn. Reson. Med. 46, 419 (2001)

    Article  Google Scholar 

  44. Menezes, N.M., Gray, M.L., Hartke, J.R., Burstein, D.: T2 and T1rho MRI in articular cartilage systems. Magn. Reson. Med. 51, 503 (2004)

    Article  Google Scholar 

  45. Keenan, K.E., et al.: Prediction of glycosaminoglycan content in human cartilage by age, T1rho and T2 MRI. Osteoarthritis Cartilage 19, 171 (2011)

    Article  Google Scholar 

  46. Witschey, W.R., et al.: T1rho MRI quantification of arthroscopically confirmed cartilage degeneration. Magn. Reson. Med. 63, 1376 (2010)

    Article  Google Scholar 

  47. Lattanzi, R., et al.: A B1-insensitive high resolution 2D T1 mapping pulse sequence for dGEMRIC of the HIP at 3 Tesla. Magn. Reson. Med. 66, 348 (2011)

    Article  Google Scholar 

  48. Siversson, C., et al.: Effects of B1 inhomogeneity correction for three-dimensional variable flip angle T1 measurements in hip dGEMRIC at 3 T and 1.5 T. Magn. Reson. Med. 67, 1776 (2012)

    Article  Google Scholar 

  49. Burstein, D., Gray, M.L., Hartman, A.L., Gipe, R., Foy, B.D.: Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J. Orthop. Res. 11, 465 (1993)

    Article  Google Scholar 

  50. Trattnig, S., et al.: MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA. Magn. Reson. Imaging 17, 577 (1999)

    Article  Google Scholar 

  51. Kim, Y.J., Jaramillo, D., Millis, M.B., Gray, M.L., Burstein, D.: Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J. Bone Joint Surg. Am. 85-A, 1987 (2003)

    Google Scholar 

  52. Owman, H., Tiderius, C.J., Neuman, P., Nyquist, F., Dahlberg, L.E.: Association between findings on delayed gadolinium-enhanced magnetic resonance imaging of cartilage and future knee osteoarthritis. Arthritis Rheum. 58, 1727 (2008)

    Article  Google Scholar 

  53. Kim, S.D., Jessel, R., Zurakowski, D., Millis, M.B., Kim, Y.J.: Anterior delayed gadolinium-enhanced MRI of cartilage values predict joint failure after periacetabular osteotomy. Clin. Orthop. Relat. Res. 470(12), 3332–3341 (2012)

    Article  Google Scholar 

  54. Lattanzi, R., et al.: A new method to analyze dGEMRIC measurements in femoroacetabular impingement: preliminary validation against arthroscopic findings. Osteoarthritis Cartilage 20, 1127 (2012)

    Article  Google Scholar 

  55. Regatte, R.R., Schweitzer, M.E.: Novel contrast mechanisms at 3 Tesla and 7 Tesla. Semin. Musculoskelet. Radiol. 12, 266 (2008)

    Article  Google Scholar 

  56. Borthakur, A., et al.: Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthritis Cartilage 8, 288 (2000)

    Article  Google Scholar 

  57. Shapiro, E.M., et al.: Sodium visibility and quantitation in intact bovine articular cartilage using high field (23)Na MRI and MRS. J. Magn. Reson. 142, 24 (2000)

    Article  Google Scholar 

  58. Wang, L., et al.: Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7T. J. Magn. Reson. Imaging 30, 606 (2009)

    Article  Google Scholar 

  59. Madelin, G., Lee, J.S., Inati, S., Jerschow, A., Regatte, R.R.: Sodium inversion recovery MRI of the knee joint in vivo at 7T. J. Magn. Reson. 207, 42 (2010)

    Article  Google Scholar 

  60. Chang, G., et al.: Improved assessment of cartilage repair tissue using fluid-suppressed (2)(3)Na inversion recovery MRI at 7 Tesla: preliminary results. Eur. Radiol. 22, 1341 (2012)

    Article  Google Scholar 

  61. Ling, W., Regatte, R.R., Navon, G., Jerschow, A.: Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc. Natl. Acad. Sci. U.S.A. 105, 2266 (2008)

    Article  Google Scholar 

  62. Singh, A., et al.: Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn. Reson. Med. 68, 588 (2012)

    Article  Google Scholar 

  63. Lee, J.S., Regatte, R.R., Jerschow, A.: Isolating chemical exchange saturation transfer contrast from magnetization transfer asymmetry under two-frequency RF irradiation. J. Magn. Reson. 215, 56 (2012)

    Article  Google Scholar 

  64. Raya, J.G., et al.: Articular cartilage: in vivo diffusion-tensor imaging. Radiology 262(2), 550–559 (2012)

    Article  Google Scholar 

  65. Filidoro, L., et al.: High-resolution diffusion tensor imaging of human patellar cartilage: feasibility and preliminary findings. Magn. Reson. Med. 53, 993 (2005)

    Article  Google Scholar 

  66. Meder, R., de Visser, S.K., Bowden, J.C., Bostrom, T., Pope, J.M.: Diffusion tensor imaging of articular cartilage as a measure of tissue microstructure. Osteoarthritis Cartilage 14, 875 (2006)

    Article  Google Scholar 

  67. Deng, X., Farley, M., Nieminen, M.T., Gray, M., Burstein, D.: Diffusion tensor imaging of native and degenerated human articular cartilage. Magn. Reson. Imaging 25, 168 (2007)

    Article  Google Scholar 

  68. Banerjee, S., et al.: Rapid in vivo musculoskeletal MR with parallel imaging at 7T. Magn. Reson. Med. 59, 655 (2008)

    Article  Google Scholar 

  69. Saha, P.K., Wehrli, F.W., Gomberg, B.R.: Fuzzy distance transform: theory, algorithms, and applications. Comput. Vis. Image Underst. 86, 171 (2002)

    Article  MATH  Google Scholar 

  70. Saha, P.K., Gomberg, B.R., Wehrli, F.W.: Three-dimensional digital topological characterization of cancellous bone architecture. Int. J. Imaging Syst. Technol. 11, 81 (2000)

    Article  Google Scholar 

  71. Rajapakse, C.S., et al.: Computational biomechanics of the distal tibia from high-resolution MR and micro-CT images. Bone 47, 556 (2010)

    Article  Google Scholar 

  72. Lindsey, C.T., et al.: Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee. Osteoarthritis Cartilage 12, 86 (2004)

    Article  Google Scholar 

  73. Bolbos, R.I., et al.: Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T. Osteoarthritis Cartilage 16, 1150 (2008)

    Article  Google Scholar 

  74. Blumenkrantz, G., et al.: A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee. Osteoarthritis Cartilage 12, 997 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants K23-AR059748, RO1-AR053133, R01-AR056260, and R01-AR060238 from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chang, G., Regatte, R.R. (2014). Advanced MRI of Cartilage and Subchondral Bone in Osteoarthritis. In: Saha, P., Maulik, U., Basu, S. (eds) Advanced Computational Approaches to Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41539-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41539-5_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41538-8

  • Online ISBN: 978-3-642-41539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics